Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Effects of Chemical Components and Manufacturing Process of Cast Iron Brake Disc on its Resonant Frequency Variation

2009-10-11
2009-01-3030
Many engineers have been working to reduce brake noise in many ways for a long time. So far, a progress has been made in preventing and predicting brake noise. Nevertheless, there are some discrepancies of brake noise generation propensity between testing for the prototype and the production. As known in general, the reason for this unpredicted brake noise occurrence in production is partly due to the variation of the resonant frequency, material and the other unpredictable or unmanageable variations of the components in a brake system. In this paper, effects of chemical components and casting process of gray iron brake disc on its resonant frequency variation have been studied. Especially this paper is focused on the variation in material aspects and manufacturing parameters during disc casting in usual production condition. And their effects are investigated by the variation of out-of-plane modal resonant frequency.
Journal Article

Systematic Brake Development Process and Optimized Robust Design of Front Axle Kinematics in Order to Reduce Oscillation Sensitivity

2009-10-11
2009-01-3038
Brake judder is about oscillations excited by brake application, which are generated in the contact area between brake pad and brake disc and are transmitted by the elements of the suspension to body and steering system. The driver perceives these perturbations as brake pedal pulsations, steering wheel rotational and body vibrations. The evaluation of a suspension concerning brake judder often takes place for the first time in road tests, since established simulation processes with a high significance concerning ride comfort are missing. At such a late moment necessary modifications in the development process are only hardly possible and very expensive. For avoiding brake judder a systematic development process is needed for brake and suspension. Each one can separately be improved in measurably borders so that their assembly is free of cold brake judder. The present paper shows appropriate test and simulation methods to achieve this.
Journal Article

Brake Timing Measurements for a Tractor-Semitrailer Under Emergency Braking

2009-10-06
2009-01-2918
The timing and associated levels of braking between initial brake pedal application and actual maximum braking at the wheels for a tractor-semitrailer are important parameters in understanding vehicle performance and response. This paper presents detailed brake timing information obtained from full scale instrumented testing of a tractor-semitrailer under various conditions of load and speed. Brake timing at steer, drive and semitrailer brake positions is analyzed for each of the tested conditions. The study further seeks to compare the full scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models available in commercial software packages in order to validate the model's brake timing parameters. The brake timing data was collected during several days of full scale instrumented testing of a tractor-semitrailer performed at the Transportation Research Center, in East Liberty, Ohio.
Journal Article

Fast Characterization of Brake Squeal Behavior

2009-10-11
2009-01-3006
The last decades have shown extensive efforts on the investigation of automotive disk brake squeal. The origin of brake squeal is seen in self-excited vibrations, caused by the friction forces transferring energy from the rotating disk into the brake system. Based on a very simple model, Popp et al. described in 2002 the conditions for positive work of the friction forces (i.e. excitation of squeal), which depends on the phase shift between the in-plane motion (with respect to the disk) of the brake pad and the friction forces. Experiments on active manipulation of this phase shift using pads with integrated piezoceramic actuators, performed by von Wagner et al. in 2004, resulted in successful suppression of disk brake squeal. The authors of the present paper used a variety of models for the investigation of the origin of the excitation mechanism by observing phase relations between the friction forces and the vibrations of the pads.
Journal Article

Automotive Brake Hose Fluid Consumption Characteristics and Its Effects on Brake System Pedal Feel

2010-04-12
2010-01-0082
During the automotive brake system design and development process, a large number of performance characteristics must be comprehended, assessed, and balanced against each other and, at times, competing performance objectives for the vehicle under development. One area in brake development that is critical to customer acceptance due to its impact on a vehicle's perceived quality is brake pedal feel. While a number of papers have focused on the specification, quantification and modeling of brake pedal feel and the various subsystem characteristics that affect it, few papers have focused specifically on brake corner hoses and their effect on pedal feel, in particular, during race-track conditions. Specifically, the effects of brake hose fluid consumption pedal travel and brake system response is not well comprehended during the brake development process.
Journal Article

Hydrostatic Wheel Drives for Vehicle Stability Control

2010-04-12
2010-01-0105
Hydrostatic (hydraulic hybrid) drives have demonstrated energy efficiency and emissions reduction benefits. This paper investigates the potential of an independent hydrostatic wheel drive system for implementing a traction-based vehicle lateral stability control system. The system allows an upper level vehicle stability controller to produce a desired corrective yaw moment via a differential distribution of torque to the independent wheel motors. In cornering maneuvers that require braking on any one wheel of the vehicle, the motors can be operated as pumps for re-generating energy into an on-board accumulator. This approach avoids or reduces activation of the friction brakes, thereby reducing energy waste as heat in the brake pads and offering potential savings in brake maintenance costs. For this study, a model of a 4×4 hydrostatic independent wheel drive system is constructed in a causal and modular fashion and is coupled to a 7 DOF vehicle handling dynamics model.
Journal Article

Statistical Analysis of Impacts of Surface Topography on Brake Squeal in Disc-Pad System

2014-04-01
2014-01-0027
A disc-pad system is established to study impacts of surface topography on brake squeal from the perspective of statistical analysis. Firstly, surface topographies of brake disc and pad are precisely measured on the scale of micron and are statistically analyzed with a three-dimensional evaluation system. Secondly, the finite element model of brake disc and pad without surface topographies is created and verified through component free modal tests. Thereby the valid brake squeal model for complex modal analysis is built with ABAQUS. An effective method is developed to apply interface topographies to the smooth contact model, which consequently establishes sixty brake squeal models with topographies. Thirdly, impacts of surface topography on brake squeal are studied through comparison and statistical analysis of prediction results with and without topographies.
Journal Article

A Study on Modeling of Driver's Braking Action to Avoid Rear-End Collision with Time Delay Neural Network

2014-04-01
2014-01-0201
Collision avoidance systems for rear-end collisions have been researched and developed. It is necessary to activate collision warnings and automatic braking systems with appropriate timing determined by a monitoring system of a driver's braking action. Although there are various systems to monitor driving behavior, this study aims to create a monitoring system using a driver model. This study was intended to construct a model of a driver's braking action with the Time Delay Neural Network (TDNN). An experimental scenario focuses on rear-end collisions on a highway, such as the driver of a host vehicle controlling the brake to avoid a collision into a leading vehicle in a stationary condition caused by a traffic jam. In order to examine the accuracy of the TDNN model, this study used four parameters: the number of learning, the number of neurons in the hidden layer, the sampling time with 0.01 second as a minimum value, and the number of the delay time.
Journal Article

Modeling, Experimentation and Sensitivity Analysis of a Pneumatic Brake System in Commercial Vehicles

2014-04-01
2014-01-0295
The main purpose of this research is to investigate the optimal design of pipeline diameter in an air brake system in order to reduce the response time for driving safety using DOE (Design of Experiment) method. To achieve this purpose, this paper presents the development and validation of a computer-aided analytical dynamic model of a pneumatic brake system in commercial vehicles. The brake system includes the subsystems for brake pedal, treadle valve, quick release valve, load sensing proportional valve and brake chamber, and the simulation models for individual components of the brake system are established within the multi-domain physical modeling software- AMESim based on the logic structure. An experimental test bench was set up by connecting each component with the nylon pipelines based on the actual layout of the 4×2 commercial vehicle air brake system.
Journal Article

Investigation of Wheel Aerodynamic Resistance of Passenger Cars

2014-04-01
2014-01-0606
There are a number of numerical and experimental studies of the aerodynamic performance of wheels that have been published. They show that wheels and wheel-housing flows are responsible for a substantial part of the total aerodynamic drag on passenger vehicles. Previous investigations have also shown that aerodynamic resistance moment acting on rotating wheels, sometimes referred to as ventilation resistance or ventilation torque is a significant contributor to the total aerodynamic resistance of the vehicle; therefore it should not be neglected when designing the wheel-housing area. This work presents a numerical study of the wheel ventilation resistance moment and factors that affect it, using computational fluid dynamics (CFD). It is demonstrated how pressure and shear forces acting on different rotating parts of the wheel affect the ventilation torque. It is also shown how a simple change of rim design can lead to a significant decrease in power consumption of the vehicle.
Journal Article

Impacts of Non-Traditional Uses of Polyurethane Foam in Automotive Applications at End of Life

2014-05-05
2014-01-9099
Polyurethane (PU) foam is used for many automotive applications with the benefits of being lightweight, durable, and resistant to heat and noise. Applications of PU foams are increasing to include non-traditional purposes targeting consumer comfort. An example of this is the use of PU foam between the engine and engine cover of a vehicle for the purpose of noise abatement. This addition will provide a quieter ride for the consumer, however will have associated environmental impacts. The additional weight will cause an increase in fuel consumption and related emissions. More significant impacts may be realized at the end-of-life stage. Recycling PU foams presents several challenges; a lack of market for the recyclate, contamination of the foams, and lack of accessibility for removal of the material.
Journal Article

Combination of Test with Simulation Analysis of Brake Groan Phenomenon

2014-04-01
2014-01-0869
During a car launch, the driving torque from driveline acts on brake disk, and may lead the pad to slip against the disk. Especially with slow brake pedal release, there is still brake torque applies on the disk, which will retard the rotation of disk, and under certain conditions, the disk and pad may stick again, so the reciprocated stick and slip can induce the noise and vibration, which can be transmitted to a passenger by both tactile and aural paths, this phenomenon is defined as brake groan. In this paper, we propose a nonlinear dynamics model of brake for bidirectional, and with 7 Degrees of Freedom (DOFs), and phase locus and Lyapunov Second Method are utilized to study the mechanism of groan. Time-frequency analysis method then is adopted to analyze the simulation results, meanwhile a test car is operated under corresponding conditions, and the test signals are sampled and then processed to acquire the features.
Journal Article

Experimental Investigations of the Topography Dynamics in Brake Pads

2013-09-30
2013-01-2027
For more than a decade, investigations of the surface topography and chemical behavior of the boundary layer have been performed. This is of great importance for the understanding of friction, as it provides valuable insights into the dynamic processes that influence the brake pad's performance. The adaption of the boundary layer to a new load condition is of particular interest because it allows for the identification and description of mechanisms that influence macroscopically-observable effects, and quantities such as the coefficient of friction. It is possible to determine time constants that describe this process of adaption. The investigations discussed in this paper combine tribometer tests and optical investigations at the same time. Therefore, the measured coefficient of friction can be related to the observed surface topography of the brake pad.
Journal Article

A Monolithic Approach to Simulate the Cooling Behavior of Disk Brakes

2013-09-30
2013-01-2046
In the present paper we introduce a monolithic CFD approach to simulate the cooling-down characteristics of disk brakes. To ensure a strong coupling between fluid and solid domain the overall transient thermal problem is solved within a single flow solver during the complete cooling-down process. We employ a fully implicit second order solution procedure. The experimental configuration consists of an inertia dynamometer including a generic 17 inch vented front disk with caliper, dust shield, bearing and knuckle. The validation is carried out for three different air flow velocities, with and without dust shield. The temperature is monitored via two thermocouples embedded into outer and inner rotor cheeks. In order to quantify the cooling-down characteristics, regression analysis are conducted on the temperature curves. The obtained cooling coefficient serves as comparison between measurement and computation.
Journal Article

Engineered Surface Features for Brake Discs to Improve Performance in Fade Conditions

2013-09-30
2013-01-2039
Driving on the race track is an especially grueling situation for the automotive brake system. Temperatures can exceed the phase transition temperature of the disc material, wear rates of friction material can be orders of magnitude higher than during street use, and hydraulic pressures and mechanical stresses on components can approach their design limits. It is a given that friction material under these conditions will wear unevenly - causing taper and cupping wear - and an associated set of performance degradations will occur, including an increase in fluid consumption (pedal travel increase) and loss of mechanical efficiency (pedal force increase).
Journal Article

Control of Gaseous Emission During the Curing of Novolac Phenolic Resin in Friction Materials Production: Production Cycle, Physical Properties and Tribological Properties Improvements

2013-09-30
2013-01-2058
Thermosetting resins such as Novolac phenolic resin are commonly used as binders in the production of friction materials. It is known that the reactions between the Novolac resin and hexamethylenetetramine (used as catalyst) produce volatile compounds as ammonia. Emitted gases give rise to pores in the friction material. This forces producers to create specific pressure-no pressure cycles to avoid cracking of the material during production. The contribution of this paper deals with the reduction of volatile compounds emission during curing by modifying the composition of the mix formula using two approaches: The first one consists in adding to the formulation suitable fillers that are able to absorb volatile compounds and not to release them for temperatures up to 200°C.
Journal Article

Brake Disc Variability: Effect on Friction and Wear

2013-09-30
2013-01-2053
Two sets of OE quality brake discs were evaluated for their equivalence in friction and wear under a humidity controlled condition in order to avoid the influence of humidity on friction and wear. These discs were received from two different suppliers located in two different countries. Small differences were found in disc chemistry and microstructure, which resulted in differences in disc properties, and friction and wear characteristics. It is recommended that extreme care must be exercised in determining the performance equivalence of one disc from one supplier against another disc from a second supplier.
Journal Article

Multi-Objective Optimization and Robust Design of Brake By Wire System Components

2013-09-30
2013-01-2059
A Brake By Wire (BBW) system is generally composed of electro-mechanical calipers at each wheel, a pedal simulator and a central controller. The brake demand is processed by the pedal and the central controller commands the brake distribution for each brake actuator. The highly responsive and independent brake actuators lead to enhanced controllability which should result in not only better basic braking performance, but also improvements in various active braking functions such as integrated chassis control, driver assistance systems, or cooperative regenerative braking. Although the BBW system has the potential for numerous advantages and innovations in braking, it has yet to be successfully introduced in series production mainly due to safety and cost concerns. Recent studies have been made to investigate the functional safety aspects and additional mechanical backup measures in this regard.
Journal Article

Wear-Induced Migration of Hot Bands: Models and Comparison with Experiments

2013-09-30
2013-01-2068
Although the radial migration of hot bands has been frequently observed, a systematic investigation of this phenomenon has not yet been performed. The ring-shaped temperature maximum, which occurs on the brake disk, is undesirable because the focused temperatures destroy the local materials in contact. Moreover, a hot band carries a dominant portion of the frictional load. If a hot band moves radially, the braking torque is directly influenced. It is supposed that material wear influences the radial hot band migration. New models demonstrate that wear is indeed the mechanism that triggers hot band migration. First, a minimal model including thermal expansion and a load-dependent loss of material is introduced. The simplicity of the model allows for an understanding of the impact of wear, as well as the mechanisms that lead to a periodic load distribution. This model can be analyzed in terms of complex eigenvalues, showing a periodic load distribution in the sliding plane.
Journal Article

Active Brake Judder Compensation Using an Electro-Hydraulic Brake System

2015-04-14
2015-01-0619
Geometric imperfections on brake rotor surface are well-known for causing periodic variations in brake torque during braking. This leads to brake judder, where vibrations are felt in the brake pedal, vehicle floor and/or steering wheel. Existing solutions to address judder often involve multiple phases of component design, extensive testing and improvement of manufacturing procedures, leading to the increase in development cost. To address this issue, active brake torque variation (BTV) compensation has been proposed for an electromechanical brake (EMB). The proposed compensator takes advantage of the EMB's powerful actuator, reasonably rigid transmission unit and high bandwidth tracking performance in achieving judder reduction.
X