Refine Your Search

null

Search Results

Viewing 1 to 9 of 9
Technical Paper

Prototype Cryogenic Oxygen Storage and Delivery Subsystem for Advanced Spacesuits

2007-07-09
2007-01-3276
Future spacesuit systems for the exploration of Mars will need to be much lighter than current designs, while at the same time reducing the consumption of water for crew cooling. One of the technology paths NASA has identified to achieve these objectives is the replacement of current high pressure oxygen storage technology in extravehicular activity (EVA) systems with cryogenic technology that can simultaneously reduce the mass of tankage required for oxygen storage and enable the use of the stored oxygen as a means of cooling the EVA astronaut. During the past year NASA has funded production of a prototype system demonstrating this capability in a design that will allow the cryogenic oxygen to be used in any attitude and gravity environment. This paper describes the design and manufacture of the prototype system. The potential significance and application of the system is also discussed.
Technical Paper

Space Suit Radiator Performance in Lunar and Mars Environments

2007-07-09
2007-01-3275
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Last year we reported on the design and initial operational assessment tests of a novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X).
Technical Paper

Demonstration of Metabolic Heat Regenerated Temperature Swing Adsorption Technology

2007-07-09
2007-01-3274
Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is currently being investigated for removal and rejection of carbon dioxide (CO2) and heat from a Portable Life Support System (PLSS) to a Martian environment. The metabolically-produced CO2 present in the ventilation loop gas is collected using a CO2 selective adsorbent that has been cooled via a heat exchanger to near CO2 sublimation temperatures (∼195 K) with liquid CO2 (LCO2) obtained from Martian resources. Once the adsorbent is fully loaded, used, warm (∼300 K), moist ventilation loop gas is used to heat the adsorbent via another heat exchanger to reject the collected CO2 to the Martian ambient. Two beds are used to achieve continuous CO2 removal by cycling between the cold and warm conditions for adsorbent loading and regeneration, respectively.
Technical Paper

Concurrent CO2 Control and O2 Generation for Space Suits and Other Advanced Life Support: A Feasibility Study

2007-07-09
2007-01-3247
The partial electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied. Conventional COGs use yttria-stabilized zirconia (YSZ) electrolytes and operate at temperatures greater than 700 °C. Operating at a lower temperature has the advantage of reducing the mass of the ancillary components such as insulation and heat exchangers (to reduce the COG oxygen output temperature for comfortable inhalation). Moreover, complete reduction of metabolically produced CO2 (into carbon and oxygen) has the potential of reducing oxygen storage weight if the oxygen can be recovered. Recently, the University of Florida developed novel ceramic oxygen generators employing a bilayer electrolyte of gadolinia-doped ceria and erbia-stabilized bismuth oxide (ESB) for NASA's future exploration of Mars.
Technical Paper

Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption

2008-06-29
2008-01-2116
Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. Also, the impact of MTSA on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA's Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.
Technical Paper

Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

2009-07-12
2009-01-2387
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. CO2 removal and rejection is accomplished by driving a sorbent through a temperature swing starting at below freezing temperatures. The swing is completed by warming the sorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. Designing a heat exchanger to efficiently transfer this energy to the sorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210 K to 280 K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously.
Technical Paper

Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Spacesuit Portable Life Support System Ventilation Subsystem

2009-07-12
2009-01-2386
As development of the Constellation spacesuit element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges that are associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control; to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream; and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study, and also describes the conceptual designs that NASA developed to address these issues.
Technical Paper

Extravehicular Activity (EVA) Thermal Micrometeoroid Garment (TMG) Thermal Performance Study

1996-07-01
961425
The Thermal Micrometeoroid Garment (TMG) is the outer portion of the Extravehicular Mobility Unit (EMU). The TMG minimizes the amount of heat transfer between an astronaut and the space environment, and provides protection from micrometeoroids. Multilayer insulation separates the outer surface of the TMG from the inner surface and crewperson. The performance of the present TMG insulation may be a contributing factor to the cold discomfort experienced by the astronauts. The TMG Thermal Performance Study tested combinations of insulation materials based on thermal conditions, total heat transfer, and insulation properties. The results from this study will be used to support design refinements for future developments of an extravehicular mobility unit.
Technical Paper

Development Status of an EVA-sized Cycling Amine Bed System for Spacesuit Carbon Dioxide and Humidity Removal

2007-07-09
2007-01-3272
Under a NASA sponsored technology development activity, Hamilton Sundstrand has designed, fabricated, tested and delivered a prototype solid amine-based carbon dioxide (CO2) and water (H2O) vapor removal system sized for Extravehicular Activity (EVA) operation. The prototype system employs two alternating and thermally-linked solid amine sorbent beds to continuously remove CO2 and H2O vapor from a closed environment. While one sorbent bed is exposed to the vent loop to remove CO2 and water vapor, the other bed is exposed to a regeneration circuit, defined as either vacuum or an inert sweep gas stream. A linear spool valve, coupled directly to the amine canister assembly, is utilized to simultaneously divert the vent loop flow and regeneration circuit flow between the two sorbent beds.
X