Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Calibration of Electrochemical Models for Li-ion Battery Cells Using Three-Electrode Testing

2020-04-14
2020-01-1184
Electrochemical models of lithium ion batteries are today a standard tool in the automotive industry for activities related to the computer-aided engineering design, analysis, and optimization of energy storage systems for electrified vehicles. One of the challenges in the development or use of such models is the need of detailed information on the cell and electrode geometry or properties of the electrode and electrolyte materials, which are typically unavailable or difficult to retrieve by end-users. This forces engineers to resort to “hand-tuning” of many physical and geometrical parameters, using standard cell-level characterization tests. This paper proposes a method to provide information and data on individual electrode performance that can be used to simplify the calibration process for electrochemical models.
Journal Article

Fast Simulation of Wave Action in Engine Air Path Systems Using Model Order Reduction

2016-04-05
2016-01-0572
Engine downsizing, boosting, direct injection and variable valve actuation, have become industry standards for reducing CO2 emissions in current production vehicles. Because of the increasing complexity of the engine air path system and the high number of degrees of freedom for engine charge management, the design of air path control algorithms has become a difficult and time consuming process. One possibility to reduce the control development time is offered by Software-in-the-Loop (SIL) or Hardware-in-the-Loop (HIL) simulation methods. However, it is significantly challenging to identify engine air path system simulation models that offer the right balance between fidelity, mathematical complexity and computational burden for SIL or HIL implementation.
Journal Article

Modeling and Analysis of a Turbocharged Diesel Engine with Variable Geometry Compressor System

2011-09-11
2011-24-0123
In order to increase the efficiency of automotive turbochargers at low speed without compromising the performance at maximum boost conditions, variable geometry compressor (VGC) systems, based on either variable inlet guide vanes or variable geometry diffusers, have been recently considered as a future design option for automotive turbochargers. This work presents a modeling, analysis and optimization study for a Diesel engine equipped with a variable geometry compressor that help understand the potentials of such technology and develop control algorithms for the VGC systems,. A cycle-averaged engine system model, validated on experimental data, is used to predict the most important variables characterizing the intake and exhaust systems (i.e., mass flow rates, pressures, temperatures) and engine performance (i.e., torque, BMEP, volumetric efficiency), in steady-state and transient conditions.
Technical Paper

A Design Procedure for Alternative Energy Storage Systems for Hybrid Vehicles

2011-09-11
2011-24-0079
Although electrochemical batteries are the mainstream for hybrid vehicle energy storage, there is continuing interest in alternative storage technologies. Alternative energy storage systems (AESS), in the form of mechanical flywheels or hydraulic accumulators, offer the potential to reduce the vehicle costs, compared to the use of electrochemical batteries. In order to maximize the benefits of mechanical or hydraulic energy storage, the system design must maximize the energy recuperation through regenerative braking and the use of the energy stored with high roundtrip efficiency, while minimizing system volume, weight and cost. This paper presents a design procedure for alternative energy storage systems for mild-hybrid vehicles, considering parallel hybrid architecture. The procedure is applied with focus on the definition of design parameters and attributes for a hydraulic AESS with high pressure accumulator.
Journal Article

Physics-Based Equivalent Circuit Model for Lithium-Ion Cells via Reduction and Approximation of Electrochemical Model

2022-03-29
2022-01-0701
Physics-based electrochemical models and empirical Equivalent Circuit Models (ECMs) are well-established and widely used modeling techniques to predict the voltage behavior of lithium-ion cells. Electrochemical models are typically very accurate and require relatively little experimental data to calibrate, but present high mathematical and computational complexity. Conversely, ECMs are more computationally efficient and mathematically simpler, making them well-suited for applications in controls, diagnosis, and state estimation of lithium-ion battery packs. However, the calibration process requires extensive testing to calibrate the parameters of the model over a wide range of operating conditions. This paper bridges the gap between these two classes of models by developing a method to analytically define the ECM parameters starting from an already-calibrated Extended Single-Particle Model (ESPM).
Technical Paper

A Comparative Study between Physics, Electrical and Data Driven Lithium-Ion Battery Voltage Modeling Approaches

2022-03-29
2022-01-0700
This paper benchmarks three different lithium-ion (Li-ion) battery voltage modelling approaches, a physics-based approach using an Extended Single Particle Model (ESPM), an equivalent circuit model, and a recurrent neural network. The ESPM is the selected physics-based approach because it offers similar complexity and computational load to the other two benchmarked models. In the ESPM, the anode and cathode are simplified to single particles, and the partial differential equations are simplified to ordinary differential equations via model order reduction. Hence, the required state variables are reduced, and the simulation speed is improved. The second approach is a third-order equivalent circuit model (ECM), and the third approach uses a model based on a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN)). A Li-ion pouch cell with 47 Ah nominal capacity is used to parameterize all the models.
Technical Paper

A Physics-Based, Control-Oriented Turbocharger Compressor Model for the Prediction of Pressure Ratio at the Limit of Stable Operations

2019-04-02
2019-01-0320
Downsizing and boosting is currently the principal solution to reduce fuel consumption in automotive engines without penalizing the power output. A key challenge for controlling the boost pressure during highly transient operations lies in avoiding to operate the turbocharger compressor in its instability region, also known as surge. While this phenomenon is well known by control engineers, it is still difficult to accurately predict during transient operations. For this reason, the scientific community has directed considerable efforts to understand the phenomena leading to the onset of unstable behavior, principally through experimental investigations or high-fidelity CFD simulations. On the other hand, less emphasis has been placed on creating control-oriented models that adopt a physics-based (rather than data-driven) approach to predict the onset of instability phenomena.
Journal Article

Optimal Sizing and Control of Battery Energy Storage Systems for Hybrid Turboelectric Aircraft

2020-03-10
2020-01-0050
Hybrid-electric gas turbine generators are considered a promising technology for more efficient and sustainable air transportation. The Ohio State University is leading the NASA University Leadership Initiative (ULI) Electric Propulsion: Challenges and Opportunities, focused on the design and demonstration of advanced components and systems to enable high-efficiency hybrid turboelectric powertrains in regional aircraft to be deployed in 2030. Within this large effort, the team is optimizing the design of the battery energy storage system (ESS) and, concurrently, developing a supervisory energy management strategy for the hybrid system to reduce fuel burn while mitigating the impact on the ESS life. In this paper, an energy-based model was developed to predict the performance of a battery-hybrid turboelectric distributed-propulsion (BHTeDP) regional jet.
Technical Paper

Co-Simulation Framework for Electro-Thermal Modeling of Lithium-Ion Cells for Automotive Applications

2023-08-28
2023-24-0163
Battery packs used in automotive application experience high-power demands, fast charging, and varied operating conditions, resulting in temperature imbalances that hasten degradation, reduce cycle life, and pose safety risks. The development of proper simulation tools capable of capturing both the cell electrical and thermal response including, predicting the cell’s temperature rise and distribution, is critical to design efficient and reliable battery packs. This paper presents a co-simulation model framework capable of predicting voltage, 2-D heat generation and temperature distribution throughout a cell. To capture the terminal voltage and 2-D heat generation across the cell, the simulation framework employs a high-fidelity electrical model paired with a charge balance model based on the Poisson equation. The 2-D volumetric heat generation provided by the charge balance model is used to predict the temperature distribution across the cell surface using CFD software.
Journal Article

Model-Based Wheel Torque and Backlash Estimation for Drivability Control

2017-03-28
2017-01-1111
To improve torque management algorithms for drivability, the powertrain controller must be able to compensate for the nonlinear dynamics of the driveline. In particular, the presence of backlash in the transmission and drive shafts excites sharp torque fluctuations during tip-in or tip-out transients, leading to a deterioration of the vehicle drivability and NVH. This paper proposes a model-based estimator that predicts the wheel torque in an automotive drivetrain, accounting for the effects of backlash and drive shaft flexibility. The starting point of this work is a control-oriented model of the transmission and vehicle drivetrain dynamics that predicts the wheel torque during tip-in and tip-out transients at fixed gear. The estimator is based upon a switching structure that combines a Kalman Filter and an open-loop prediction based on the developed model.
Journal Article

Performance Evaluation of Lithium-ion Batteries under Low-Pressure Conditions for Aviation Applications

2023-04-11
2023-01-0504
Electrification is getting more important in the aviation industry with the increasing need for reducing emissions of carbon dioxide and fuel consumption. It is crucial to assess the behavior of Li-Ion batteries at high-altitude conditions to design safe and reliable battery packs. This paper aims at benchmarking the performance of different formats of battery cells (pouch cells and cylindrical cells) in low-pressure environments. A test setup was designed and fabricated to replicate the standard procedure defined by the RTCA DO-311 standard, such as the altitude test and rapid decompression test. During the test voltage, current, temperature, and pressure were monitored, and the evaluation criteria is based on the capacity retention, along with the structural integrity of the cell. From preliminary tests, it was observed that cylindrical cells do not show a significant change in performance at low-pressure conditions thanks to their steel casing.
Technical Paper

Procedures for Experimental Characterization of Thermal Properties in Li-Ion Battery Modules and Parameters Identification for Thermal Models

2024-04-09
2024-01-2670
Concerns about climate change have significantly accelerated the process of vehicle electrification to improve the sustainability of the transportation sector. Increasing the adoption of electrified vehicles is closely tied to the advancement of reliable energy storage systems, with lithium-ion batteries currently standing as the most widely employed technology. One of the key technical challenges for reliability and durability of battery packs is the ability to accurately predict and control the temperature of the cells and temperature gradient between cells inside the pack. For this reason, accurate models are required to predict and control the cell temperature during driving and charging operations. This work presents a set of procedures tailored to characterize and measure the thermal properties in li-ion cells and modules.
X