Refine Your Search

Topic

Author

Search Results

Standard

Procedure for the Continuous Sampling and Measurement of Non-Volatile Particle Emissions from Aircraft Turbine Engines

2013-11-18
HISTORICAL
AIR6241
This SAE Aerospace Information Report (AIR) describes procedures, required continuous sampling conditions, and instrumentation for the measurement of non-volatile particle number and mass concentrations from the exhaust of aircraft gas turbine engines. Procedures are included to calculate sampling loss performance. This AIR is not intended for in-flight testing, nor does it apply to engine operating in the afterburning mode.
Standard

Procedure for the Continuous Sampling and Measurement of Non-Volatile Particle Emissions from Aircraft Turbine Engines

2020-07-28
CURRENT
AIR6241A
This Aerospace Information Report (AIR) is a historical technical record describing procedures, required continuous sampling conditions, and instrumentation for the measurement of non-volatile particle number and mass concentrations from the exhaust of aircraft gas turbine engines. Procedures are included to calculate sampling loss performance. This AIR is not intended for in-flight testing, nor does it apply to engine operating in the afterburning mode. This Aerospace Information Report is a historical technical record of the initial document detailing the measurement of non-volatile particle emissions at the exit plane of aircraft gas turbine engines. This methodology was adopted by ICAO into Annex 16 Vol II and updated into Aerospace Recommended Practice ARP6320. Future updates of this document may include explanations of the reasoning and assumptions used to develop this measurement methodology.
Standard

Procedure for the Continuous Sampling and Measurement of Non-Volatile Particle Emissions from Aircraft Turbine Engines

2020-07-28
WIP
AIR6241B

This Aerospace Information Report (AIR) is a historical technical record describing procedures, required continuous sampling conditions, and instrumentation for the measurement of non-volatile particle number and mass concentrations from the exhaust of aircraft gas turbine engines. Procedures are included to calculate sampling loss performance. This AIR is not intended for in-flight testing, nor does it apply to engine operating in the afterburning mode.

This Aerospace Information Report is a historical technical record of the initial document detailing the measurement of non-volatile particle emissions at the exit plane of aircraft gas turbine engines. This methodology was adopted by ICAO into Annex 16 Vol II and updated into Aerospace Recommended Practice ARP6320.

Future updates of this document may include explanations of the reasoning and assumptions used to develop this measurement methodology.

Standard

Procedure for the Calculation of non-volatile Particulate Matter Sampling and Measurement System Penetration Functions and System Loss Correction Factors

2022-06-24
CURRENT
AIR6504
This SAE Aerospace Information Report (AIR) describes a method for assessing size dependent particle losses in a sampling and measurement system of specified geometry utilizing the non-volatile PM (nvPM) mass and number concentrations measured at the end of the sampling system.1 The penetration functions of the sampling and measurement system may be determined either by measurement or by analytic computational methods. Loss mechanisms including thermophoretic (which has a very weak size dependence) and size dependent losses are considered in this method2 along with the uncertainties due to both measurement error and the assumptions of the method. The results of this system loss assessment allow development of estimated correction factors for nvPM mass and number concentrations to account for the system losses facilitating estimation of the nvPM mass and number at the engine exhaust nozzle exit plane.
Standard

NADCAP Requirements for Nondestructive Testing Magnetic Particle Survey

2008-08-07
CURRENT
AS7114/2A
This document has been declared "CANCELLED" as of August 2008 and has been superseded by PRI AC7114/2. By this action, this document will remain listed in the Numerical Section of the Aerospace Standards Index noting that it is superseded by PRI AC7114/2. Cancelled specifications are available from SAE.
Standard

Glossary of Terms, Acronyms, and Definitions

2014-10-01
CURRENT
CMB7_4A
This Bulletin provides a comprehensive list of Terms and Definitions used in or related to TechAmerica prepared standards/documents. The information in these listings was extracted from standards and documents prepared by the Systems Engineering (G47), Configuration Management (G33), Life Cycle Logistics Supportability and Enterprise Information Management Interoperability Committees along with other pertinent international, industry and government standards. It is intended that this bulletin be used as a resource to help with harmonization of terms and definitions across standards. One should be cognizant of the release date of this Bulletin and understand that updates to the included standards and handbooks after this Bulletin was released may affect its accuracy.
Standard

THERMAL ANTI-ICING EQUIPMENT, WING AND EMPENNAGE

1997-08-01
HISTORICAL
AS18607
This specification covers the general requirements for the design, installation, and performance of thermal anti-icing equipment for the wings and empennage surfaces in aircraft.
Standard

Heat Up Time

2012-05-09
CURRENT
AIR4279A
An analysis was made of the effects of various surface conditions on the heat up time of steel bars which are heated in atmosphere furnaces to the temperature range used for steel hardening or normalizing. The purpose was to examine whether a standard heating time for a given section thickness is acceptable.
Standard

HEAT UP TIME

1995-05-01
HISTORICAL
AIR4279
An analysis was made of the effects of various surface conditions on the heat up time of steel bars which are heated in atmosphere furnaces to the temperature range used for steel hardening or normalizing. The purpose was to examine whether a standard heating time for a given section thickness is acceptable.
Standard

Modular Avionics Backplane Functional Requirements and Consensus Items (MABFRACI)

2012-05-03
CURRENT
AIR4980A
The original purpose of this document was to establish interface requirements for modular avionics backplanes to be prototyped up to 1995. The document was issued as ARD50011 in September 1992. It is being reissued as an SAE Aerospace Information Report (AIR) in order to: a Preserve the requirements for more than 2 years b Support design of retrofits and avionics systems to be fielded in the years 1995 to 2000 c Provide a baseline for updating the requirements of future integrated systems These requirements were and are intended to promote standardization of modular avionic backplane interfaces. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms.
Standard

MODULAR AVIONICS BACKPLANE FUNCTIONAL REQUIREMENTS AND CONSENSUS ITEMS (MABFRACI)

2006-07-25
HISTORICAL
AIR4980
The original purpose of this document was to establish interface requirements for modular avionics backplanes to be prototyped up to 1995. The document was issued as ARD50011 in September 1992. It is being reissued as an SAE Aerospace Information Report (AIR) in order to: a Preserve the requirements for more than 2 years b Support design of retrofits and avionics systems to be fielded in the years 1995 to 2000 c Provide a baseline for updating the requirements of future integrated systems These requirements were and are intended to promote standardization of modular avionic backplane interfaces. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms.
Standard

Passenger Hypoxia Protection Utilizing Oxygen Enriched Gas Mixtures

2018-10-18
CURRENT
AIR6036
Currently, existing civil aviation standards address the design and certification of oxygen dispensing devices that utilize oxygen sources supplying at least 99.5% oxygen. This Aerospace Information Report discusses issues relating to the use in the passenger cabin of oxygen enriched breathing gas mixtures having an oxygen content of less than 99.5% and describes one method of showing that passenger oxygen dispensing devices provide suitable hypoxia protection when used with such mixtures.
X