Refine Your Search

Topic

Author

Search Results

Standard

Contamination definition for Fuel Tank Inerting Systems

2016-02-01
WIP
AIR6374
The scope of this document is to provide a guidance of the common contamination types and their concentrations in order to size FTIS components and characterize its performance on generic commercial aircraft.
Standard

Adapter, Closed-Circuit Fuel Servicing

2021-03-11
WIP
AS6848
Aircraft-mounted Closed Circuit Refueling receiver adapter – Definition of standard interface dimensions for adapter which interfaces with MIL-PRF-52747F Nozzle.
Standard

Fuel Tank Inerting System Ground and Flight Test Methodology Recommended Practice

2015-05-19
WIP
ARP6063
This SAE Aerospace Recommended Practice (ARP) provides guidance for the verification and certification of a “commercial” fixed wing aircraft fuel tank inerting system (FTIS) and will provide technical references and data regarding ground and flight testing of an FTIS. The intent of this ARP is to address issues associated with the verification requirements based on current regulatory guidance per AC25.981-2C
Standard

THERMAL ANTI-ICING EQUIPMENT, WING AND EMPENNAGE

1997-08-01
HISTORICAL
AS18607
This specification covers the general requirements for the design, installation, and performance of thermal anti-icing equipment for the wings and empennage surfaces in aircraft.
Standard

Aircraft Fuel Tank Inerting Systems

2017-04-05
WIP
ARP6078A
The Aerospace Recommended Practices of this document are intended for nitrogen-based Flammability Reduction Means (FRM) implemented on transport category, turbine powered airplanes. The recommended practices herein, therefore, relate only to the transport category aircraft, and focus specifically on contemporary inerting systems equipment. Such systems are referred to a Fuel Tank Inerting Systems (FTIS) in this document. This document does not cover the following: - Military aircraft applications - Air separation technologies other than hollow fiber membrane (HFM) and pressure swing adsorption (PSA) - Inerting of conventional unheated wing tanks or aircraft dry bays - Expected future technology solutions for the generation of inert gas. The advice contained in this document is aimed towards providing aircraft manufacturers with guidance on the key issues associated with contemporary aircraft fuel tank inerting systems to supplement the guidance in FAA Advisory Circular AC 25.981-2.
Standard

Aircraft Fuel Tank Inerting Systems

2012-10-03
CURRENT
ARP6078
The Aerospace Recommended Practices of this document are intended for nitrogen-based Flammability Reduction Means (FRM) implemented on transport category, turbine powered airplanes. The recommended practices herein, therefore, relate only to the transport category aircraft, and focus specifically on contemporary inerting systems equipment. Such systems are referred to a Fuel Tank Inerting Systems (FTIS) in this document. This document does not cover the following: Military aircraft applications Air separation technologies other than hollow fiber membrane (HFM) and pressure swing adsorption (PSA) Inerting of conventional unheated wing tanks or aircraft dry bays Expected future technology solutions for the generation of inert gas. The advice contained in this document is aimed towards providing aircraft manufacturers with guidance on the key issues associated with contemporary aircraft fuel tank inerting systems to supplement the guidance in FAA Advisory Circular AC 25.981-2.
Standard

DEFINITION OF PRESSURE SURGE TEST AND MEASUREMENT METHODS FOR RECEIVER AIRCRAFT

1983-03-01
HISTORICAL
ARP1665
The test procedure applies to the refueling manifold system connecting the receiver aircraft fuel tanks to the refueling source fuel pump(s) for both ground and aerial refueling. The test procedure is intended to verify that the limit value for surge pressure specified for the receiver fuel system is not exceeded when refueling from a refueling source which meets the requirements of AS 1284 (reference 2). This recommended practice is not directly applicable to surge pressure developed during operation of an aircraft fuel system, such as initiating or stopping engine fuel feed or fuel transfer within an aircraft, or the pressure surge produced when the fuel pumps are first started to fill an empty fuel manifold.
Standard

Definition of Pressure Surge Test and Measurement Methods for Receiver Aircraft

2007-12-04
CURRENT
ARP1665A
The test procedure applies to the refueling manifold system connecting the receiver aircraft fuel tanks to the refueling source fuel pump(s) for both ground and aerial refueling. The test procedure is intended to verify that the limit value for surge pressure specified for the receiver fuel system is not exceeded when refueling from a refueling source which meets the requirements of AS1284 (reference 2). This recommended practice is not directly applicable to surge pressure developed during operation of an aircraft fuel system, such as initiating or stopping engine fuel feed or fuel transfer within an aircraft, or the pressure surge produced when the fuel pumps are first started to fill an empty fuel manifold.
Standard

TRUE MASS FUEL FLOW INSTRUMENTS

1962-02-01
HISTORICAL
AS431A
This Aerospace Standard covers three basic types of true mass flow indicating instruments. Each may consist of an indicator, transmitter and other auxiliary means such as a power supply or amplifier as required.
Standard

TRUE MASS FUEL FLOW INSTRUMENTS

2008-02-16
CURRENT
AS431B
This SAE Aerospace Standard (AS) covers three basic types of true mass flow indicating instruments. Each may consist of an indicator, transmitter and other auxiliary means such as a power supply or amplifier as required.
Standard

Guidance on the Impact of Fuel Properties on Fuel System Design and Operation

2018-02-24
CURRENT
AIR7484
This document describes a number of jet fuel properties and where applicable gives the specification limits for Jet A and Jet A-1, though the properties are generally applicable to all turbine fuels. Later versions of this document will give more details on specification limits for other similar fuels, such as TS-1, where they differ from Jet A and Jet-A1. It gives details about the possible impact on airframe fuel system design.
X