Refine Your Search

Topic

Search Results

Video

Neural Network-based Optimal Control for Advanced Vehicular Thermal Management Systems

2011-12-05
Advanced vehicular thermal management system can improve engine performance, minimize fuel consumption, and reduce emissions by harmoniously operating computer-controlled servomotor components. In this paper, a neural network-based optimal control strategy is proposed to regulate the engine temperature through the advanced cooling system. Presenter Asma Al Tamimi, Hashemite University
Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Battery Electric Vehicles and Extended Range Electric Vehicles, like the Chevrolet Volt, can use electrical energy from the Grid to meet the majority of a driver�s transportation needs. This has the positive societal effects of displace petroleum consumption and associated pollutants from combustion on a well to wheels basis, as well as reduced energy costs for the driver. CO2 may also be lower, but this depends upon the nature of the grid energy generation. There is a mix of sources � coal-fired, gas -fired, nuclear or renewables, like hydro, solar, wind or biomass for grid electrical energy. This mix changes by region, and also on the weather and time of day. By monitoring the grid mix and communicating it to drivers (or to their vehicles) in real-time, electrically driven vehicles may be recharged to take advantage of the lowest CO2, and potentially lower cost charging opportunities.
Video

Maturity Level and Variant Validation of Mechatronic Systems in Commercial Vehicles

2011-12-05
Driver assistance systems (e.g. the emergency brake assist Active Brake Assist2, or ABA2 for short, in the Mercedes-Benz Actros) are becoming increasingly common in heavy-duty commercial vehicles. Due to the close interconnection with drivetrain and suspension control systems, the integration and validation of the functions make the most exacting demands on processes and tools involved in mechatronics development. Presenter Thomas Bardelang, Daimler AG
Video

Characterization and Potential of Dual Fuel Combustion in a Modern Diesel Engine

2011-12-05
Diesel Dual Fuel, DDF, is a concept which promises the possibility to utilize CNG/biogas in a compression ignition engine maintaining a high compression ratio, made possible by the high knock resistance of methane, and the resulting benefits in thermal efficiency associated with Diesel combustion. Presenter Fredrik K�nigsson, AVL Sweden
Video

Ice Phobic Coatings for Control and Covered Surfaces

2012-03-14
Silicones have been utilized in multiple industries in the last 50 years and their applications are still expanding as technology grows. Ice phobic coatings, as an example, have been utilized on lock walls, navigation channels, wind turbines, hydropower intakes, and aircraft. Without protection these applications have a high risk of failure in the functions they perform. For example, ice build up on an aircraft?s aerodynamic surfaces increases drag which reduces lift during flight operations. Utilizing a silicone ice phobic coating significantly reduces the adhesion of ice to aerodynamic surfaces. Compared to other polymeric materials, silicones are known for their broad operating temperature range and lend themselves to excellent performance in a variety of harsh environments. Especially in low temperatures where ice adhesion is a concern, silicones retain their elastomeric physical properties and low modulus.
Video

High Speed Machining of CFRP Parts

2012-03-16
High Speed Machining of CFRP Parts Investigation of the influence of new geometries, cutting datas and coolant capabilities on the surface finish of CFRP parts. State of the art: Different CFRP grades and machining conditions make geometry adjustments to the tool necessary. Mechanical failures through machining operations can be avoided in most of the cases. New unidirectional CFRP grades and dry machining processes again lead to machining problems. This study investigates new geometries to avoid heat damage with dry maching and air coolant in case of unidirectional CFRP. With help of a thermo camera and the surface investigation with a scanning electron microscope, heat damage can be analysed and therefore new geometries can be developed and tested. Target is to develop a new multi purpose CFRP geometry to meet the requirements of the future. The reduction of different geometries used leads to major cost savings. Presenter Ingo von Puttkamer, Guhring oHG
Video

Eurocae WG-72 Activities

2012-03-16
The presentation provides an overview about the activities of Eurocae Working Group 72 (WG-72) starting with a brief synopsis of the context which suggested why such a committee should be established in 2006. It then goes into further detail about the drivers for the work of the committee, which call for the products to be delivered. It addresses some of the challenges with respect to its users. It points out that one of the lessons the committee learned was importance of the focus on the users, such that the products provide their maximum utility. Hence, the users should better be among the participants to achieve this objective. Other industries have dealt with the subject of Information System (or Cyber-Physical) Security long before this industry was forced to consider it. Consequently there are many industry standards and national or international norms, which may help to develop what is deemed needed for Civil Aviation.
Video

Tailored Conversion Coatings for Enhanced Adhesion to Metal

2012-03-21
As a result of recommendation from the Augustine Panel, the direction for Human Space Flight has been altered from the original plan referred to as Constellation. NASA's Human Exploration Framework Team (HEFT) proposes the use of a Shuttle Derived Heavy Lift Launch Vehicle (SDLV) and an Orion derived spacecraft (salvaged from Constellation) to support a new flexible direction for space exploration. The SDLV must be developed within an environment of a constrained budget and a preferred fast development schedule. Thus, it has been proposed to utilize existing assets from the Shuttle Program to speed development at a lower cost. These existing assets should not only include structures such as external tanks or solid rockets, but also the Flight Software which has traditionally been a ?long pole? in new development efforts. The avionics and software for the Space Shuttle was primarily developed in the 70's and considered state of the art for that time.
Video

Overview of Southwest Research Institute Activities in Engine Technology R&D

2012-05-10
This presentation will cover an overview of challenges and key discussion points for advanced electric motor and drive testing . Voiko will visit some examples of how D&V approaches these issues and also some suggestions for how the industry can view these intriguing problems as opportunities. The presentation will also delve into current testing developments that involve resolver, load bank and power measurement devices by highlighting solutions in the market today. There will also be a cursory look into the future of electric motor testing and what we can expect in the near term. Presenter Voiko Loukanov, D&V Electronics Limited
Video

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-06-18
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles ?with and without? the technologies being evaluated.
Video

Corning Specialty Optical Fibers for Elevated Temperature Applications

2012-03-13
Corning Specialty Fiber Group developed new optical fibers with acrylate type coating materials for elevated temperature applications (up to +200C). Available single or dual coat designs, hermetic carbon coating, bend insensitive single-mode and multimode fiber glass designs expand application areas for fiber optics. Presenter Valery Kozlov
Video

PPG study reveals importance of color in vehicle purchase decisions

2021-03-20
PPG Industries, the world's leading manufacturer of transportation coatings, recently completed a study of consumer opinions regarding the importance of coatings and color as they relate to new car purchases. The goal of the study was to identify premium color consumers who place a large importance on vehicle color, what vehicles they purchase and how satisfied they are with the current color offerings. The internet based study consisted of approximately 1,340 U.S. consumers who have either purchased a new vehicle in the past two years, or are planning to purchase a vehicle within the next two years. Results from this study will be presented and those consumers identified by demographics. Presenter Michael Millar, PPG
Video

Using the Beer-Lambert Law and Kubelka-Munk Theory to Model Percent Transmittance of Multilayer Composite Coatings

2012-05-23
Transmission of light through automotive topcoat and primer layers can lead to degradation of the underlying electrocoat layer and to topcoat delamination. In order to protect against this, it is critical that transmission of both ultraviolet wavelengths and certain visible wavelengths be effectively blocked by the topcoat and primer layers. The clearcoat, basecoat and primer each have their own role and combine to protect against light transmission. The transmittance of these combined layers is typically measured by the Integrating Sphere UV-Visible Spectrophotometer. It would both simplify measurement of the topcoat systems and allow better system modeling if these layers could be measured separately and combined mathematically. We demonstrate here that absorbing and reflecting pigments can be effectively modeled using the Beer-Lambert law while results for scattering pigments are consistent with the Kubelka-Munk theory.
Video

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-06-18
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
Video

Metal Oxide Particle Emissions from Diesel and Petrol Engines

2012-06-18
All internal combustion piston engines emit solid nanoparticles. Some are soot particles resulting from incomplete combustion of fuels, or lube oil. Some particles are metal compounds, most probably metal oxides. A major source of metal compound particles is engine abrasion. The lube oil transports these abraded particles into the combustion zone. There they are partially vaporized and ultrafine oxide particles formed through nucleation [1]. Other sources are the metallic additives to the lube oil, metallic additives in the fuel, and debris from the catalytic coatings in the exhaust-gas emission control devices. The formation process results in extremely fine particles, typically smaller than 50 nm. Thus they intrude through the alveolar membranes directly into the human organism. The consequent health risk necessitates a careful investigation of these emissions and effective curtailment.
X