Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Modeling Space Suit Mobility: Applications to Design and Operations

2001-07-09
2001-01-2162
Computer simulation of extravehicular activity (EVA) is increasingly being used in planning and training for EVA. A space suit model is an important, but often overlooked, component of an EVA simulation. Because of the inherent difficulties in collecting angle and torque data for space suit joints in realistic conditions, little data exists on the torques that a space suit’s wearer must provide in order to move in the space suit. A joint angle and torque database was compiled on the Extravehicular Maneuvering Unit (EMU), with a novel measurement technique that used both human test subjects and an instrumented robot. Using data collected in the experiment, a hysteresis modeling technique was used to predict EMU joint torques from joint angular positions. The hysteresis model was then applied to EVA operations by mapping out the reach and work envelopes for the EMU.
Technical Paper

A Freezing Fog/Drizzle Event during the FRAM-S Project

2011-06-13
2011-38-0028
The objective of this work is to better understand freezing fog/drizzle conditions using observations collected during the Fog Remote Sensing and Modeling project (FRAM-S) that took place at St. John's International Airport, St. John's, NL, Canada. This location was ~1 km away from the Atlantic Ocean coast. During the project, the following measurements at one minute resolution were collected: precipitation rate (PR) and amount, fog/drizzle microphysics, 3D wind speed (Uh) and turbulence (Uh'), visibility (Vis), IR and SW radiative fluxes, temperature (T) and relative humidity (RH), and aerosol observations. The reflectivity and microphysical parameters obtained from the Metek Inc. MRR (Microwave Rain Radar) were also used in the analysis. The measurements were then used to obtain freezing fog/drizzle microphysical characteristics and their relation to visibility.
Technical Paper

Freezing Fog and Drizzle Observations

2015-06-15
2015-01-2113
Fog and drizzle observations collected during the arctic weather and SAR (Search and Rescue) operations (SAAWSO) project at sub-freezing temperatures (T) are analyzed in this study to identify icing conditions, improve ground-based in-situ and remote sensing observations, and develop icing parameterizations for numerical weather prediction (NWP) models. The SAAWSO project took place during the 2012-2013 winter conditions that occurred over St. John's, NFL, Canada. Observations were obtained by a Droplet Measuring Technologies Fog Measuring Device (FMD), a ground cloud imaging probe (GCIP), a Radiometrics Profiling Microwave Radiometer (PMWR), a Rosemount icing detector, a laser disdrometer, and surface meteorological sensors. Precipitation, wind, and radiation data were also collected. Results suggest that observations obtained from integrated in-situ and remote sensors can be used to characterize icing conditions.
Technical Paper

Optical Flow Sensor Using Geometric Moiré Interferometry

2004-07-19
2004-01-2267
We report on a feasibility study of an optical micro-electro-mechanical systems (MEMS) flow sensor to measure flow rate using Moiré fringe displacement of a floating element. Due to constraints on weight, power, and size for space environmental systems, the development of sensor components that minimize the equivalent systems mass (ESM) while maintaining or exceeding required specifications is highly desirable. A feature of the optical detection method is a physical separation of electrical components from the flow stream. The geometric Moiré fringe shift optically amplifies small displacements by the ratio of the fringe pitch to the movable grating pitch that is detected using an external CCD imager, providing an electrically isolated, robust, direct scheme for detecting flow from shear stress induced displacement.
X