Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Enhancement of Design for Manufacturing and Assembly Guidelines for Effective Application in Aerospace Part and Process Design

2020-01-16
2020-01-6001
An aircraft’s detail part and assembly product design and development phase contribute to about three-fourths of the total cost spent in its entire product life cycle and determine the fate of the aircraft’s life as a whole. Each aerospace design organization presently has developed their own set of design rules, focusing on improving product design capability by enhancing the determined “Design for X” factor, with the focus on continual optimization and improvements. However there is huge variation among these design principles due to the nonstandardization of these design guidelines. To meet this gap, the use of Design for Manufacturing and Assembly (DFMA®) principles applicable for aerospace has to be developed. DFMA®) principles have been proven effective as guidelines to designers and manufacturing engineers in various discrete manufacturing and process industries.
Technical Paper

Enhancement of 6M Methodology as a Design for Assembly Tool for Developing Effective Aerostructures Assembly Process Designs

2021-08-27
2021-01-6001
Aerostructures assembly (ASA) is a vital process in any aircraft production phase that integrates individual detail parts, sub-assemblies, major assemblies, components, and systems into a final deliverable, a completed aircraft structure fit for flight. ASA in an aircraft’s entire product life cycle represents more than half the cost and time that is a significant portion of the total aircraft production cost. ASA depends on highly skilled manual labor work across the global aerospace supply chain for various assembly processes and subprocesses required for assembling detail parts into sub-assemblies and components to achieve the design intent of the load-carrying aerostructure that is airworthy for the complete operational cycle till disposal of an aircraft. The assembly processes can significantly impact quality, safety, and reliability and can affect an aircraft structure’s performance and design intent.
Technical Paper

A Study on the Development of an Effective Framework for Implementation and Sustenance of an Obsolescence Material Management System in an Aerospace Supplier Manufacturing Industry Environment

2019-10-11
2019-28-0145
Obsolescence Material management plays an important and vital role in today’s modern Aerospace manufacturing, Aerospace Maintenance, Repair and Overhaul industry as well as Aerospace Distributors. Aerospace vehicles have a considerable longer product life-cycle when compared to any other consumer goods like automobile and electronics industry. With the advent of new, disruptive technologies, many sources and supplies of materials including COTS and Standard catalogue parts, components and goods, which are widely used in an Aerospace manufacturing environment, are diminishing at a considerable rate and thus result in their obsolescence before the end disposal of the product life cycle. It is one of the leading causes to the sale of counterfeit and fraudulent parts and components, which can result in considerable deterioration of Quality and Cost to Customer.
Technical Paper

A Framework for Effective Implementation and Sustenance of Design for Manufacturing and Assembly Guidelines in the Aerospace Product Design and Development Phase of Aerospace Advanced Product Quality Planning

2020-11-02
2020-01-5111
The aerospace industry had recently initiated the journey towards the transition to the Advanced Product Quality Planning (APQP) process, for the manufacturing and assembly process of their products in their supply chain, aiming to continually meet the rising delivery demand of the global aerospace industry and improve the quality and costs of current products and services. Of the various APQP process elements and requirements, one specific requirement is the application of Design For Manufacturing and Assembly (DFMA®) guidelines, early in the product design and development phase, aiming to design, develop, and analyze the designs for effective and efficient product realization. These guidelines, though widely used, are fairly new for the aerospace industry, and there is no standard framework readily available to aerospace organizations for the successful deployment of these guidelines in the Aerospace APQP process.
X