Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Characterization of the Ultrafine and Black Carbon Emissions from Different Aviation Alternative Fuels

2015-09-15
2015-01-2562
This study reports gaseous and particle (ultrafine and black carbon (BC)) emissions from a turbofan engine core on standard Jet A-1 and three alternative fuels, including 100% hydrothermolysis synthetic kerosene with aromatics (CH-SKA), 50% Hydro-processed Esters and Fatty Acid paraffinic kerosene (HEFA-SPK), and 100% Fischer Tropsch (FT-SPK). Gaseous emissions from this engine for various fuels were similar but significant differences in particle emissions were observed. During the idle condition, it was observed that the non-refractory mass fraction in the emitted particles were higher than during higher engine load condition. This observation is consistent for all test fuels. The 100% CH-SKA fuel was found to have noticeable reductions in BC emissions when compared to Jet A-1 by 28-38% by different BC instruments (and 7% in refractory particle number (PN) emissions) at take-off condition.
Technical Paper

Fundamental Ice Crystal Accretion Physics Studies

2011-06-13
2011-38-0018
Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations.
Technical Paper

Development and Commissioning of a Linear Compressor Cascade Rig for Ice Crystal Research

2011-06-13
2011-38-0079
This paper describes the commissioning of a linear compressor cascade rig for ice crystal research. The rig is located in an altitude chamber so the test section stagnation pressure, temperature and Mach number can be varied independently. The facility is open-circuit which eliminates the possibility of recirculating ice crystals reentering the test section and modifying the median mass diameter and total water content in time. As this is an innovative facility, the operating procedures and instrumentation used are discussed. Sample flow quality data are presented showing the distribution of velocity, temperature, turbulence intensity and ice water concentration in the test section. The control and repeatability of experimental parameters is also discussed.
Technical Paper

Development of a Unique Icing Spray System for a New Facility for Certification of Large Turbofan Engines

2011-06-13
2011-38-0099
The Global Aerospace Centre for Icing and Environmental Research (GLACIER) facility has been constructed in Thompson, Manitoba, Canada. This project involves the construction and operation of a facility which will provide icing certification tests for large gas turbine engines, as well as performance, endurance and other gas turbine engine qualification testing. MDS Aero Support, in partnership with the National Research Council of Canada (NRC), Pratt and Whitney Canada, and Rolls Royce Canada, has developed a globally unique outdoor engine test and certification facility. The prime purpose of this facility is for icing certification of aviation gas turbine engines, initially for Rolls-Royce and Pratt & Whitney, two of the three largest gas turbine manufacturers in the world.
Technical Paper

Gaseous and Particle Emissions from a Turbo-Jet Engine Operating on Alternative Fuels at Simulated Altitudes

2011-10-18
2011-01-2597
Gaseous and particle emission assessments on a 1.15 kN-thrust turbojet engine were conducted at five altitudes in an altitude chamber with Jet A-1 fuel, pure Fischer Tropsch (FT), and two mixed fuels of JP-8 with FT or Camelina-based hydro-processed jet fuels. In general, lower emissions in CO₂, NOx, and particle number as well as higher emissions in CO and THC were observed at higher altitudes compared to lower altitudes. These observations, which were similar for all test fuels, were attributed to the reduced combustion efficiency and temperature at higher altitudes. The use of alternative fuels resulted in lower CO₂ emissions, ranging from 0.7% to 1.7% for 50% to 100% synthetic fuel in the fuel mixture at various altitudes. In terms of CO, the use of 100% FT fuel resulted in CO reduction up to 9.7% at 1525 m altitude and up to 5.9% at 9145 m altitude.
Technical Paper

Carded Recycled Carbon Fiber Mats for the Production of Thermoset Composites via Infusion/Compression Molding

2013-09-17
2013-01-2208
The use of carbon fiber reinforced thermoset composites has doubled in the last decade raising questions about the waste generated from manufacturing and at end-of-life, especially in the aircraft industry. In this study, 2.5 cm long carbon fibers were recovered from thermoset composite waste using a commercial scale pyrolysis process. Scanning electron microscopy, density measurements, single filament tensile testing as well as micro-droplet testing were performed to characterize the morphology, mechanical properties, and surface adhesion of the fibers. The recycled fibers appeared to be mostly undamaged and clean, exhibiting comparable mechanical properties to virgin carbon fibers. A carding process followed by an ultrasound treatment produced randomly aligned recycled fiber mats. These mats were used to fabricate composite plates, with fiber volume fractions up to 40 %, by infusion / compression molding.
Technical Paper

Immediate Impacts on Particulate and Gaseous Emissions from a T56 Turbo-Prop Engine Using a Biofuel Blend

2013-09-17
2013-01-2131
Adoption of hydro-processed esters and fatty acid biojet fuels is a critical component for the sustainability of the aviation industry. Aviation biofuels reduce pollution and provide alternatives to conventional fossil fuels. A study of the impacts of biofuels on emissions from a T56 turbo-prop engine was undertaken as a joint effort among several departments of the Government of Canada. In this study, particulate (including particle number and black carbon (BC) mass) and regulated gaseous emissions (CO2, CO, NO, NO2, THC) were characterized with the engine operating on conventional F-34 jet fuel and jet fuel blended with camelina-based hydro-processed biojet fuel (C-HEFA) by 50% in volume. Emissions characterization, conducted after 20-hour ground engine durability tests, showed immediate significant reductions in particle number and BC mass when the engine was operated on the C-HEFA blend.
Technical Paper

Development of an Altitude Evaporation Model for Icing Tunnel Control

2023-06-15
2023-01-1425
In 2017 the National Research Council of Canada developed an evaporation model for controlling engine icing tunnels in real time. The model included simplifications to allow it to update the control system once per second, including the assumption of sea level pressure in some calculations. Recently the engine icing system was required in an altitude facility requiring operation down to static temperatures of -40°C, and up to an altitude of 9.1 km (30 kft) or 30 kPa. To accommodate the larger temperature and pressure range the model was modified by removing the assumption of sea level operation and expanding the temperature range. In addition, due to the higher concentration of water vapor that can be held by the atmosphere at lower pressures, the significance of the effect of humidity on the air properties and the effect on the model was investigated.
Technical Paper

Comparability of Hot-Wire Estimates of Liquid Water Content in SLD Conditions

2023-06-15
2023-01-1423
Future compliance to FAA 14 CFR Part 25 and EASA CS-25 Appendix O conditions has required icing wind tunnels to expand their cloud simulation envelope, and demonstrate accurate calibration of liquid water content and droplet particle size distributions under these conditions. This has led to a renewed community interest in the accuracy of these calibrations, and the potential inter-facility bias due to the choice of instrumentation and processing methods. This article provides a comparison of the response of various hot-wire liquid water content instruments under Appendix C and supercooled large droplet conditions, after an independent similar analysis at other wind tunnel facilities. The instruments are being used, or are under consideration for use, by facilities collaborating in the ICE GENESIS program.
Technical Paper

Validation and Instrumentation of a Small Modular Multi-Stage Axial Compressor for Ice Crystal Icing Research

2019-06-10
2019-01-1940
The National Research Council of Canada (NRC) has undergone the development of a Small Axial Compressor Rig for modelling altitude ice accretion in aircraft engines. The rig consists of two axial compressor stages measuring approximately 150mm in diameter, an extension duct to allow residence time for partial melting of ice crystals and a test piece. The axial compressor stages are intended to provide realistic engine conditioning such as fracture, pressure rise, temperature rise and centrifuging of glaciated ice crystals entering the rig. The rig was designed for use in altitude icing wind tunnels such as the NRC’s altitude icing wind tunnel (AIWT), research altitude test facility (RATFac.), and those of other organization such as NASA Glenn and Technical University of Braunshweig. Previous development work [1] provided partial validation of the aerodynamic performance of just the first compressor stage at 90% power.
Technical Paper

Technique for Ice Crystal Particle Size Measurements and Results for the National Research Council of Canada Altitude Ice Crystal Test System

2015-06-15
2015-01-2125
This paper describes the equipment, analysis methods and results obtained for particle size measurements based on a particle imaging velocimetry (PIV) system in which a short duration laser pulse is used to backlight airborne particles. This produces high quality and high resolution images of fast moving airborne particles in a non-intrusive manner. This imaging technique is also used to examine particle morphology and 2D particle trajectory and velocity. The image analysis methods are outlined and validation test results discussed which show the measurement of reference glass beads between 20 and 400 microns were generally to within their stated size. As well, validation testing using known icing wind tunnel droplet distributions were compared with Spraytek 2000 Malvern droplet size measurements and showed agreement of the MVD's to be within ±5% for distributions having nominally 20, 40 and 80 micron MVD's.
Technical Paper

Development of a Supercooled Large Droplet Environment within the NRC Altitude Icing Wind Tunnel

2015-06-15
2015-01-2092
Simulations of supercooled large droplet (SLD) icing environments within the NRC's Altitude Icing Wind Tunnel (AIWT) have been performed in which broad band mass distribution spectra are achieved that include a distinct pattern of liquid water content (LWC) over a range of droplet sizes (i.e., bi-modal distribution). The mass distribution is achieved through modification of the existing spray system of the AIWT to allow two spray profiles with differing LWC and median volumetric diameter (MVD) to be simultaneously injected into the flow. Results of spray profile distributions measured in the test section have demonstrated that freezing drizzle conditions, where MVD is either less than or greater than 40 μm, can be achieved.
Technical Paper

NRC Particle Detection Probe: Results and Analysis from Ground and Flight Tests

2019-06-10
2019-01-1933
High altitude ice crystals are causing in-service events in excess of one per month for commercial aircraft. The effects include air data probes malfunctioning (pitot pressure and total air temperature in particular), and uncommanded engine power loss or flameout events. The National Research Council Canada (NRC) has developed a particle detection probe (PDP) that mounts on the fuselage of aircraft to sense and quantify the ice crystals in the environment. The probe is low-power and non-intrusive. This paper presents the results of ground and flight testing of this probe. Results are presented for ground testing in a sea level ice crystal wind tunnel and an altitude icing tunnel capable of generating both ice crystal and super-cooled liquid. The PDP was operated on several flight campaigns and the results of two will be presented.
Technical Paper

Development and Application of an Impedance-Based Instrument for Measuring the Liquid Fraction and Thickness of Ice Crystal Accretions

2015-06-15
2015-01-2134
Ice crystals ingested by a jet engine at high altitude can partially melt and then accrete within the forward stages of the compressor, potentially causing performance loss, damage and/or flameout. Recent research into this ice crystal icing (ICI) phenomenon conducted at the National Research Council of Canada suggests that the liquid water content vliq of an accretion significantly affects the accretion's susceptibility to erosion by ice crystals, and therefore accretion growth. This paper describes the development and application of an instrument for measuring vliq, potentially providing a method for correlating erosion behavior (e.g. as ductile or brittle) and properties. The instrument measures the complex admittance Y* of a mixed-phase deposit bridging a pair of electrodes, which is modeled as a resistor and capacitor in parallel, and calculates the deposit's relative permittivity εr from the capacitance.
Technical Paper

Simulation of Ice Particle Melting in the NRCC RATFac Mixed-Phase Icing Tunnel

2015-06-15
2015-01-2107
Ice crystals ingested by a jet engine at high altitude can partially melt and then accrete within the compressor, potentially causing performance loss, damage and/or flameout. Several studies of this ice crystal icing (ICI) phenomenon conducted in the RATFac (Research Altitude Test Facility) altitude chamber at the National Research Council of Canada (NRCC) have shown that liquid water is required for accretion. CFD-based tools for ICI must therefore be capable of predicting particle melting due to heat transfer from the air warmed by compression and possibly also due to impact with warm surfaces. This paper describes CFD simulations of particle melting and evaporation in the RATFac icing tunnel for the former mechanism, conducted using a Lagrangian particle tracking model combined with a stochastic random walk approach to simulate turbulent dispersion. Inter-phase coupling of heat and mass transfer is achieved with the particle source-in-cell method.
Technical Paper

Icing Test and Measurement Capabilities of the NRC’s Gas Turbine Laboratory

2019-06-10
2019-01-1943
The National Research Council’s Gas Turbine Laboratory provides industry leading icing facilities that allow manufacturers to develop, validate and certify new products for flight in adverse conditions. This paper shows how NRC measurement techniques are used across the facilities, and presents a literature-review of recently developed capabilities. The overview includes new details on some facilities, and future capabilities that are in development or planned for the near future. Methods developed at the NRC for characterizing inclement conditions are discussed and include the Isokinetic Probe, Particle Shadow Velocimetry, the Particle Detection Probe, and a size-binned real-time thermodynamic evaporation model.
Technical Paper

In-Flight Icing of UAVs - The Influence of Reynolds Number on the Ice Accretion Process

2011-10-18
2011-01-2572
The intensive deployment of UAVs for surveillance and reconnaissance missions during the last couple of decades has revealed their vulnerability to icing conditions. At present, a common icing avoidance strategy is simply not to fly when icing is forecast. Consequently, UAV missions in cold seasons and cold regions can be delayed for days when icing conditions persist. While this approach limits substantially the failure of UAV missions as a result of icing, there is obviously a need to develop all-weather capabilities. A key step in accomplishing this objective is to understand better the influence of a smaller geometry and a lower speed on the ice accretion process, relative to the extensively researched area of in-flight icing for traditional aircraft configurations characterized by high Reynolds number. Our analysis of the influence of Reynolds number on the ice accretion process is performed for the NACA0012 airfoil.
X