Refine Your Search

Topic

Search Results

Standard

Helicopter Engine-Rotor System Compatibility

2021-03-10
CURRENT
ARP704A
This SAE Aerospace Recommended Practice (ARP) recommends a methodology to be used for the design, analysis and test evaluation of modern helicopter gas turbine propulsion system stability and transient response characteristics. This methodology utilizes the computational power of modern digital computers to more thoroughly analyze, simulate and bench-test the helicopter engine/rotor system speed control loop over the flight envelope. This up-front work results in significantly less effort expended during flight test and delivers a more effective system into service. The methodology presented herein is recommended for modern digital electronic propulsion control systems and also for traditional analog and hydromechanical systems.
Standard

A Method of Ground Resonance Testing for Helicopters

1985-01-01
CURRENT
AIR883
(This document supersedes and cancels AIR 12) 'Ground resonance' is a term which originated in the early days of autogiro development in this country. It is a somewhat ambiguous term as the conditions it describes usually occur at the ground but do not have any association with the common expression 'ground effect'. However, the troubles usually associated with 'ground resonance' do occur when the ship is on or near the ground.
Standard

EVALUATION OF HELICOPTER TURBINE ENGINE LINEAR VIBRATION ENVIRONMENT

2021-03-11
CURRENT
AIR1289A
This SAE Aerospace Information Report (AIR) outlines a recommended procedure for evaluation of the vibration environment to which the gas turbine engine powerplant is subjected in the helicopter installation. This analysis of engine vibration is normally demonstrated on a one-time basis upon initial certification, or after a major modification, of an engine/helicopter configuration. This AIR deals with linear vibration as measured on the basic case structure of the engine and not, for example, torsional vibration in drive shafting or vibration of a component within the engine such as a compressor or turbine airfoil. In summary, this AIR discusses the engine manufacturer’s "Installation Test Code" aspects of engine vibration and proposes an appropriate measurement method.
Standard

The Effect of Installation Power Losses on the Overall Performance of a Helicopter

2023-01-20
CURRENT
AIR5642
The purpose of this SAE Aerospace Information Report (AIR) is to illustrate the effect of installation power losses on the performance of a helicopter. Installation power losses result from a variety of sources, some associated directly with the basic engine installation, and some coming from the installation of specific items of aircraft mission specific equipment. Close attention must be paid to the accurate measurement of these losses so that the correct aircraft performance is calculated. Installation power losses inevitably result in a reduction in the overall performance of the aircraft. In some cases, careful attention to detail will allow specific elements of the overall loss to be reduced with immediate benefit for the mission performance of the aircraft. When considering items of equipment that affect the engine, it is important to understand the effect these will have on overall aircraft performance to ensure that mission capability is not unduly compromised.
Standard

Air Bleed Objective for Helicopter Turbine Engines

1997-05-01
HISTORICAL
AIR984C
This SAE Aerospace Information Report (AIR) defines the helicopter bleed air requirements which may be obtained through compressor extraction and is intended as a guide to engine designers.
Standard

Air Bleed Objective for Rotorcraft Turbine Engines

2023-05-10
CURRENT
AIR984D
This SAE Aerospace Information Report (AIR) defines the helicopter bleed air requirements which may be obtained through compressor extraction and is intended as a guide to engine designers.
Standard

Substantiation of Power Available and Inlet Distortion Compliance for Rotorcraft Engine Inlet Barrier Filter Installations

2023-10-05
CURRENT
ARP6912
This SAE Aerospace Recommended Practice (ARP) identifies and defines methods of compliance with power available and inlet distortion requirements for rotorcraft with inlet barrier filter (IBF) installations. The material developed herein is intended to provide industry-recommended methods of compliance with civil airworthiness regulations. It is intended to serve as a basis for new or revised FAA advisory material describing acceptable methods for determining power assurance, establishing power available, and for substantiating acceptable engine inlet distortion for IBF installations. The ARP does not address other types of inlet protection systems such as inertial separator, electrostatic precipitators, or foreign object debris (FOD) screens.
Standard

Defining and Measuring Factors Affecting Helicopter Turbine Engine Power Available

1998-09-01
HISTORICAL
ARP1702A
This SAE Aerospace Recommended Practice (ARP) identifies and defines a method of measuring those factors affecting installed power available for helicopter power plants. These factors are installation losses, accessory power extraction, and operation effects. Accurate determination of these factors is vital in the calculation of helicopter performance as described in the flight manual. It is intended that the methods herein prescribe and define each factor as well as an approach to measuring said factor. Only standard installations of turboshaft engines in helicopters are considered. Special arrangements leading to high installation losses, such as the fitting of an infrared suppressor may require individual techniques for the determination and definition of engine installation losses.
Standard

Defining and Measuring Factors Affecting Helicopter Turbine Engine Power Available

2021-10-01
CURRENT
ARP1702B
This SAE Aerospace Recommended Practice (ARP) identifies and defines a method of measuring those factors affecting installed power available for helicopter powerplants. These factors are installation losses, accessory power extraction, and operational effects. Accurate determination of these factors is vital in the calculation of helicopter performance as described in the RFM. It is intended that the methods presented herein prescribe and define each factor as well as an approach to measuring said factor. Only basic installations of turboshaft engines in helicopters are considered. Although the methods described may apply in principle to other configurations that lead to more complex installation losses, such as an inlet particle separator, inlet barrier filter (with or without a bypass system), or infrared suppressor, specialized or individual techniques may be required in these cases for the determination and definition of engine installation losses.
Standard

Helicopter Engine/Airframe Interface Document and Checklist

2022-06-27
CURRENT
ARP1507B
This SAE Aerospace Recommended Practice (ARP) provides a guide for the preparation of a helicopter engine/airframe interface document and checklist. This document and checklist should identify the information needed by the engine manufacturer and the aircraft manufacturer to integrate the engine design with the aircraft design and either provide this information or give reference to where this information is located. The intent is to assure that the engine manufacturer and the airframe manufacturer identify and make provision for this information so it can be easily accessible to either manufacturer as needed in the development stages of an engine-airframe integration project.
X