Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

A Specification Analysis Framework for Aircraft Systems

2016-09-20
2016-01-2023
Future aircraft systems are projected to have order of magnitude greater power and thermal demands, along with tighter constraints on the performance of the power and thermal management subsystems. This trend has led to the need for a fully integrated design process where power and thermal systems, and their interactions, are considered simultaneously. To support this new design paradigm, a general framework for codifying and checking specifications and requirements is presented. This framework is domain independent and can be used to translate requirement language into a structured definition that can be quickly queried and applied to simulation and measurement data. It is constructed by generalizing a previously developed power quality analysis framework. The application of this framework is demonstrated through the translation of thermal specifications for airborne electrical equipment, into the SPecification And Requirement Evaluation (SPARE) Tool.
Technical Paper

Design of a High-Temperature Utility Electromechanical Actuator

2012-10-22
2012-01-2214
Electric actuation on aerospace platforms has significant advantages compared to its hydraulic counterparts, particularly in terms of enhanced reliability, reduced maintenance, advanced diagnostic/performance capabilities, and possibly reduced weight and cost. It is thus not surprising that military and commercial aerospace sectors are introducing more electrical actuation architectures. A logical continuation of this trend is the replacement of hydraulic utility actuators in applications with harsh environments such as wide-range ambient temperatures and high vibration, where hydraulic actuation is still dominating. Such environments provide new challenges to the design of electric actuators, particularly considering that performance, weight, volume, and cost should be competitive with the equivalent hydraulic systems.
Technical Paper

Developing Analysis for Large Displacement Stability for Aircraft Electrical Power Systems

2014-09-16
2014-01-2115
Future more electric aircraft (MEA) architectures that improve electrical power system's (EPS's) source and load utilization will require advance stability analysis capabilities. Systems are becoming more complex with bidirectional flows from power regeneration, multiple sources per channel and higher peak to average power ratios. Unknown load profiles with large transients complicate common stability analysis techniques. Advancements in analysis are critical for providing useful feedback to the system integrator and designers of multi-source, multi-load power systems. Overall, a framework for evaluating stability with large displacement events has been developed. Within this framework, voltage transient bounds are obtained by identifying the worst case load profile. The results can be used by system designers or integrators to provide specifications or limits to suppliers. Subsystem suppliers can test and evaluate their design prior to integration and hardware development.
X