Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Start-Up Behaviors in the CAPL 2 Flight Experiment

1997-07-01
972328
The CAPL 2 Flight Experiment, flown on Space Shuttle STS-69 in 1995, was a flight demonstration of a full-scale prototype of a thermal control system planned for the Earth Observing System (EOS-AM) instruments Flight tests successfully demonstrated various CPL operations with simulated EOS-AM power profiles, including baseline and backup start-up procedures. In general, there were no significant differences in CPL performance between one-G and zero-G. However, some unusual behaviors were observed in several start-ups during the flight test. This paper describes CAPL 2 start-ups in detail, and offers explanations for the notably different zero-G behaviors.
Technical Paper

Capillary Limit in a Loop Heat Pipe with a Single Evaporator

2002-07-15
2002-01-2502
This paper describes a study on the capillary limit of a loop heat pipe (LHP) at low powers. The slow thermal response of the loop at low powers makes it possible to observe interactions among various components after the capillary limit is exceeded. The capillary limit at low powers is achieved by imposing an additional pressure drop on the vapor line through the use of a metering valve. A differential pressure transducer is also used to measure the pressure drop across the evaporator and the compensation chamber (CC). Test results show that when the capillary limit is exceeded, vapor will penetrate the primary wick, resulting in an increase of the CC temperature. Because the evaporator can tolerate vapor bubbles, the LHP will continue to function and may reach a new steady state at a higher operating temperature. Thus, the LHP will exhibit a graceful degradation in performance rather than a complete failure.
Technical Paper

Capillary Limit in a Loop Heat Pipe with Dual Evaporators

2002-07-15
2002-01-2503
This paper describes a study on the capillary limit of a loop heat pipe (LHP) with two evaporators and two condensers. Both theoretical analysis and experimental investigation are performed. Experimental tests conducted include heat load to one evaporator only, even heat loads to both evaporators, and uneven heat loads to both evaporators. Test results show that after the capillary limit is exceeded, vapor will penetrate through the wick of the weaker evaporator, and the compensation chamber (CC) of that evaporator will control the loop operating temperature regardless of which CC has been in control prior to the event. Because the evaporator can tolerate vapor bubbles, the loop can continue to work after vapor penetration. As the loop operating temperature increases, the system pressure drop actually decreases due to a decrease in liquid and vapor viscosities. Thus, the loop may reach a new steady state at a higher operating temperature after vapor penetration.
Technical Paper

Testing of Flight Components for the Capillary Pumped Loop Flight Experiment

1993-07-01
932235
The Capillary Pumped Loop Flight Experiment (CAPL) is a prototype of the Earth Observing System (EOS) instrument thermal control systems. Four CAPL flight hardware components were tested in the Instrument Thermal Test Bed at NASA's Goddard Space Flight Center. The components tested were the capillary cold plates, capillary starter pump, heat pipe heat exchangers (HPHXs), and reservoir. The testing verified that all components meet or exceed their individual performance specifications. Consequently, the components have been integrated into the CAPL experiment which will be flown on the Space Shuttle in late 1993.
Technical Paper

Flight Testing of the Capillary Pumped Loop Flight Experiment

1995-07-01
951566
The Capillary Pumped Loop Flight Experiment (CAPL) employs a passive two-phase thermal control system that uses the latent heat of vaporization of ammonia to transfer heat over long distances. CAPL was designed as a prototype of the Earth Observing System (EOS) instrument thermal control systems. The purpose of the mission was to provide validation of the system performance in micro-gravity, prior to implementation on EOS. CAPL was flown on STS-60 in February, 1994, with some unexpected results related to gravitational effects on two-phase systems. Flight test results and post flight investigations will be addressed, along with a brief description of the experiment design.
Technical Paper

Development and Applications of the Groove Analysis Program (GAP)

1995-07-01
951554
An IBM Personal Computer (PC) version of the Groove Analysis Program (GAP) was developed to predict the steady state heat transport capability of axially grooved heat pipes for a specified groove geometry and working fluid. In the model, the heat transport capability of an axially grooved heat pipe, usually governed by the capillary limit, is determined by the numerical solution of the governing equation for momentum conservation with the appropriate boundary conditions. This paper discusses the theory behind the development of the GAP model. It also presents many useful capabilities of the model. Furthermore, correlations of flight test performance data using GAP are presented and discussed.
Technical Paper

Performance of the CAPL 2 Flight Experiment

1996-07-01
961432
This paper describes flight test results of the CAPL 2 Flight Experiment, which is a full scale prototype of a capillary pumped loop (CPL) heat transport system to be used for thermal control of the Earth Observing System (EOS-AM) instruments. One unique feature of CAPL 2 is its capillary starter pump cold plate design, which consists of a single capillary starter pump and two heat pipes. The starter pump enhances start-up success due to its self-priming capability, and provides the necessary capillary pumping force for the entire loop. The heat pipes provide the required isothermalization of the cold plate. Flight tests included those pertinent to specific EOS applications and those intended for verifying generic CPL operating characteristics and performance limits. Experimental results confirmed that the starter pump was indeed self-priming and the loop could be successfully started every time.
Technical Paper

Heat Load Sharing in a Capillary Pumped Loop With Multiple Evaporators and Multiple Condensers

2005-07-11
2005-01-2881
This paper describes the heat load sharing function among multiple parallel evaporators in a capillary pumped loop (CPL). In the normal mode of operation, the evaporators cool the instruments by absorbing the waste heat. When an instrument is turned off, the attached evaporator can keep it warm by receiving heat from other evaporators serving the operating instruments. This is referred to as heat load sharing. A theoretical basis of heat load sharing is given first. The fact that the wicks in the powered evaporators will develop capillary pressure to force the generated vapor to flow to cold locations where the pressure is lower leads to the conclusion that heat load sharing is an inherent function of a CPL with multiple evaporators. Heat load sharing has been verified with many CPLs in ground tests. Experimental results of the Capillary Pumped Loop 3 (CAPL 3) Flight Experiment are presented in this paper. Factors that affect the amount of heat being shared are discussed.
Technical Paper

An Improved High Power Hybrid capillary pumped loop

1989-07-01
891566
The High-Power Spacecraft Thermal Management (HPSTM) system was modified and upgraded to facilitate improved performance testing. Modifications to the system included augmenting the heat dissipation capacity of the condenser sink for steady-state high power operation, adding more pressure transducers to monitor pressure drops in various components of the system, installing pressure contact thermocouples on the evaporators to measure the heating surface temperature, providing a coolant loop to one of the evaporator plates for heat load sharing operation, installing a load cell on the reservoir to monitor transient fluid flows, and re-orienting the reservoir to reduce the effects of compressed vapor during transient operations. The system demonstrated a steady, continuous operation at a power input of 20 kW for 10 hours in the capillary mode. Test results also showed about 33% less variation of the reservoir set point temperature during power transients.
Technical Paper

Flight Testing of a Cryogenic Capillary Pumped Loop

1999-08-02
1999-01-2627
This paper describes the flight test results of the fifth generation cryogenic capillary pumped loop (CCPL-5) which flew on the Space Shuttle STS-95 in October of 1998 as part of the CRYOTSU Flight Experiment. This flight was the first in-space demonstration of the CCPL, a lightweight heat transport and thermal switching device for future integrated cryogenic bus systems. The CCPL-5 utilized nitrogen as the working fluid and operated between 75K and 110K. Flight results indicated excellent performance of the CCPL-5 in a micro-gravity environment. The CCPL could start from a supercritical condition in all tests, and the reservoir set point temperature controlled the loop operating temperature regardless of changes in the heat load and/or the sink temperature. In addition, the loop demonstrated successful operation with heat loads ranging from 0.5W to 3W, as well as with parasitic heat loads alone.
Technical Paper

A Parametric Study of Performance Characteristics of Loop Heat Pipes

1999-07-12
1999-01-2006
A parametric study of performance characteristics of a Loop Heat Pipe (LHP) is presented. A mathematical model, based on the steady-state energy conservation equations, is used. The calculations are performed by varying the operation conditions (heat load, sink and ambient temperatures, and elevation) and the LHP design parameters (working fluid, transport length size, external thermal conductance of the condenser and wick properties). The results are illustrated on LHP performance curves (saturation temperature as a function of applied power). All the results are compared with a baseline configuration to analyze the effects of different parameters. Operating limits due to various constraints such as heat transport limit, capillary pressure limit and the vapor pressure limit are discussed.
Technical Paper

Thermal Performance and Operational Characteristics of Loop Heat Pipe (NRL LHP)

1998-07-13
981813
In this paper, results of the NRL LHP experimental studies, conducted by Naval Research Laboratory (NRL) and NASA Goddard Space Flight Center, will be presented. Emphasis in this test program is to examine the “turnkey” startup of the NRL LHP and its operational characteristics. Series of tests were performed, including startup tests, power cycling tests, low power tests, and high power tests. The NRL LHP has demonstrated very robust operations throughout the tests. In addition, hysteresis was found at low power operations. Importance of the two-phase dynamics in the evaporator core is realized, which has shown significant effects on loop operations.
X