Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Hole Expansion Characteristics of Advanced High Strength Steel (AHSS) Grades and Their Effects on Manufacturability in Automotive Industry

2022-10-05
2022-28-0350
Currently, automotive industries are using Advanced High-Strength Steels (AHSS) sheet grades to achieve key requirements like light weighting and improved crash performance. But forming of AHSS grades becomes key challenge due to its lesser ductility and edge fracturing tendency during forming. In general, most of the automotive components undergoes shearing operations like blanking and punching which affects the edge ductility of the steel. AHSS grades possess limited edge ductility compared with conventional steel grades which results in edge fracturing due to tensile strain during stretch flanging operation. Stretch flange-ability is an important formability characteristic, which aids in material selection to avoid edge fracturing of complex shaped parts. Material with better stretch flange-ability possess better edge ductility and hence perform better in stretch flanging of sheet metal.
Technical Paper

Rubber Tire Characterization Using Experimental and Computational Methods in Crash Applications

2015-01-14
2015-26-0170
Tire plays an important role in frontal impacts as it acts as a load path to transfer loads from barrier to side sill or rocker panels of passenger vehicles. In order to achieve better correlation and more reliable predictions of vehicle crash performance in CAE simulations, modeling techniques are continuously getting refined with detailed representation of vehicle components in full vehicle crash simulations. In this study, detailed tire modeling process is explored to represent tire dynamic stiffness more accurately in frontal impact crash simulations. Detailed representation of tire internal components such as steel belts, body plies, steel beads along with rubber tread and sidewall portion have been done. Passenger car tubeless radial tire was chosen for this study. Initially, quasi-static tensile coupon tests were carried out in both longitudinal and lateral direction of tread portion of tire.
Technical Paper

Automotive Crankshaft Development in Austempered Ductile Iron Casting

2023-05-25
2023-28-1302
The automotive industry is facing a challenge as efficiency improvements are required to address the strict emission norms which in turn requires high performance downsized, lightweight IC engines. The increasing demand for lightweight engine needs high strength to weight ratio materials. To meet high strength to weight ratio, castings are preferable. However due to strength limitations for critical crankshaft applications, it forces to use costly forgings such as micro alloyed forging steel and Martensitic (after heat treatment) forging steel. To reduce the cost impact, high strength Austempered Ductile iron (ADI) casting is developed for crankshaft applications to substitute steel forgings. Austempered Ductile Iron is having an excellent mechanical properties due to aus-ferritic structure. The improved properties of developed ADI Crankshaft over steel forged crankshaft offers additional weight advantage.
Technical Paper

Dissimilar Resistance Spot Welding of Steel and Aluminium Alloy Using Ni Interlayer for Automobile Structure

2023-05-25
2023-28-1355
A lightweight multi-material combination of steel and aluminium alloy (Al) is becoming a novel approach towards environmentally sustainable transport systems. Studies show that 10% reduction of vehicle weight results into 3-7% reduction in specific fuel consumption in IC engines and a 13.7% improvement in electric range for electric vehicles. However, dissimilar welding of Al/steel is a key challenge because of incompatible thermo-physical properties (melting point, thermal conductivity, and coefficient of thermal expansion) and low miscibility between Al and steel. The formation of brittle and hard Al-steel intermetallic compound (IMC) at the joint interface is the major concern for dissimilar welding of Al/steel. In this work, efforts are made to check the feasibility of Ni interlayer to control IMC formation at the interface of Al/steel dissimilar welded joint. Resistance spot welding is used to join low carbon steel CR01 and Al AA6061-T6 with pure Ni interlayer.
Technical Paper

Use of Powder Metallurgy Based Connecting Rod for Diesel Engine Application

2023-05-25
2023-28-1352
The usage of forging a preformed, near net shape, compacted and sintered metal powder has been widely accepted since the eighties and is now one of the mainstays for producing Connecting rods in North America. However, its use in Indian subcontinent is limited as its counterpart i.e. conventional steel forging is still the most dominant. Powder metallurgy route has many advantages like good dimensional accuracy; minimum scattering of weight etc. Despite these advantages, the Powder metallurgy process is still not preferred predominantly due to technical (endurance) and infrastructural limitations. This work envisages combining the benefits of powder metallurgy process with the required mechanical properties viz. tensile and fatigue strength alongside design modifications to meet the requirements of a connecting rod for a 2-cylinder diesel engine. The connecting rods met the fatigue life at the required FOS equaling the performance of a conventionally forged connecting rod.
Technical Paper

Evaluation of Ferritic Stainless Steel Performance in Exhaust Environment

2022-10-05
2022-28-0344
In current scenario, there is trend to use stainless steels in place of carbon steels and aluminized carbon steels for Exhaust application. In response to changing regulatory requirements and durability performance requirements of exhaust systems, the ferritic stainless steels are proven to be best suited for the purpose. There are multiple ferritic stainless steels available as options for exhaust system. The material in an exhaust system is subject to heat, oxidation, corrosion and condensate. These environment condition demands that exhaust material should possess high temperature corrosion and oxidation resistance along with required mechanical performance such as vibration and thermo-mechanical load cycles. This work is an attempt to develop simulated test methods for corrosion and thermal environment and evaluate performance of commonly used ferritic stainless steels.
X