Refine Your Search

Topic

Author

Search Results

Standard

ITS In-Vehicle Message Priority

2002-02-07
CURRENT
J2395_200202
This SAE Recommended Practice applies to both Original Equipment Manufacturer (OEM) and aftermarket ITS message-generating systems for passenger vehicles and heavy trucks. The recommended practice describes the method for prioritizing ITS in-vehicle messages and/or displayed information based on a defined set of criteria. Each criterion has a fixed number of levels that are used to rate/rank a given message or information item to determine its prioritization value. The prioritization value is used to determine the priority in which simultaneous, or overlapping, in-vehicle messages are presented to the driver.
Standard

Remote Steering Control Systems

2004-08-12
CURRENT
J2588_200408
This SAE Information Report establishes a uniform procedure for assuring the manufactured quality, installed utility and performance of automotive remote steering controls other than those provided by the vehicle manufacturer (OEM). These products are intended to provide driving capability to persons with physical disabilities. The adaptive modifications seek to compensate for lost or reduced function in the extremities of the driver with a disability. Remote steering controls are designed to provide a steering input device alternative to the OEM steering wheel that either reduces the required input force, changes the required range of motion or changes the location of the steering control or any combination of the above. These controls supplement by power, other than by the driver’s own muscular efforts, the force output of the driver with a disability.
Standard

MANUAL CONTROLS FOR MATURE DRIVERS

1997-10-01
CURRENT
J2119_199710
Since little data exists to provide appropriate values for control parameters that would be appropriate for mature drivers, the following recommendations are of a general nature. However, they are based upon the current understanding of the aging processes that characterize mature drivers. Notwithstanding the lack of an extensive amount of data in this field, the dissemination of this SAE Information Report is considered to be appropriate and timely in light of the large increase in the number of mature drivers on the public roads, and because of the need to at least initiate efforts toward developing an information report covering this issue. It is realized that there may be cases where specific recommendations may conflict with vehicle packaging and/or operational requirements. Deviation from the recommendations may be necessary and permissible to achieve the best overall system performance.
Standard

Brake Hydraulic Component Flow Rate Measurement for High Differential Pressure (>5 bar)

2017-05-18
CURRENT
J3052_201705
This recommended practice provides a method, test set-up, and test conditions for brake hydraulic component flow rate measurement for high differential pressure (>5 bar) flow conditions. It is intended for hydraulic brake components which affect the brake fluid flow characteristics in a hydraulic brake circuit, that are part of a circuit for which the flow characteristics are important to system operation, and that are exposed to high operating pressure differentials (in the 5 to 100 bar range). Typical applications may include measurement of flow through chassis controls valve bodies, orifices in the brake system such as in flow bolts, junction blocks, and master cylinders, and through brake pipe configurations.
Standard

PNEUMATIC SPRING TERMINOLOGY

1989-06-01
HISTORICAL
J511_198906
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Pneumatic Spring Terminology

2016-04-01
CURRENT
J511_201604
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Enhanced E/E Diagnostic Test Modes

2008-10-02
CURRENT
J2190_200810
This SAE Recommended Practice describes the implementation of Enhanced Diagnostic Test Modes, which are intended to supplement the legislated Diagnostic Test Modes defined in SAE J1979. Modes are defined for access to emission related test data beyond what is included in SAE J1979, and for non-emission related data. This document describes the data byte values for diagnostic messages transmitted between diagnostic test equipment, either on-vehicle or off-vehicle, and vehicle electronic control modules. No distinction is made between test modes for emission related and non-emission related diagnostics. These messages can be used with a diagnostic serial data link such as described in SAE J1850 or ISO 9141-2. For each test mode, this document includes a functional description of the test mode, request and report message data byte content, and an example if useful for clarification.
Standard

Measurement and Characterization of Electronically Controlled Driveline Clutch Systems

2021-04-09
CURRENT
J3011_202104
This SAE Recommended Practice covers the most common applications of electronically controlled on-demand clutch systems used in passenger (car and light truck) vehicle applications. This practice is applicable for torque modulation devices used in transfer cases, electronic limited slip differential (eLSD) cross-axle devices, rear drive module (RDM) integrated torque transfer devices with or without disconnect capability, and other related torque transfer devices.
Standard

Laboratory Testing of Light Duty Vehicle Electric Cooling Fan Assemblies for Airflow Performance

2014-08-28
HISTORICAL
J2867_201408
This SAE Recommended Practice is intended for use in testing and evaluating the performance of Light Duty automotive electric engine cooling fans. These Electric Cooling Fan (ECF) Assemblies are purchased by Light Duty Truck and Passenger Car OEM’s from suppliers. They are purchased as complete assemblies, consisting of the fan(s), motor(s), and shroud (see Figure 1); this Recommended Practice will only consider such complete assemblies. Some purchased assemblies using brush-type motors may also include control devices such as power resistors or pulse width modulation (PWM) electronics for speed control. In the case of brushless motor technology, the controller is an integral part of the motor where it also performs the commutation process electronically. The performance measurement would include fan output in terms of airflow and pressure, and fan input electric power in terms of voltage and current.
Standard

Laboratory Testing of Light-Duty Vehicle Electric Cooling Fan Assemblies for Airflow Performance

2019-02-13
CURRENT
J2867_201902
This SAE recommended practice is intended for use in testing and evaluating the performance of light-duty automotive electric engine cooling fan assemblies. These Electric Cooling Fan (ECF) assemblies are purchased by light-duty truck and passenger car OEMs from suppliers. They are purchased as complete assemblies, consisting mainly of the fan(s), motor(s), and shroud (see Figure 1); this Recommended Practice will only consider such complete assemblies. Some purchased assemblies using brush-type motors may also include digital control devices such as power resistors or pulse width modulation (PWM) electronics or local interconnect network (LIN) for speed control. In the case of brushless motor technology, the controller is an integral part of the motor where it also performs the commutation process electronically. The performance measurement would include fan output in terms of airflow and pressure, and fan input electric power in terms of voltage and current.
Standard

FUEL ECONOMY MEASUREMENT TEST (ENGINEERING TYPE) FOR TRUCKS AND BUSES

1982-07-01
HISTORICAL
J1376_198207
This procedure incorporates test cycles that produce relative fuel economy data relating to long haul, short haul, and. local driving patterns, or any combination of these and to those components developed to improve fuel economy for these patterns. The tests conducted on a specific vehicle are to reflect that vehicle’s general mode of operation. The procedure is intended to be used under controlled, warmed-up conditions on a test tract or on suitable roads. A minimum of two vehicles running simultaneously is required. Test condition recommendations are provided for undertaking this engineering test. If it is necessary to conduct a test outside of these test conditions, the purpose of the test and the variant conditions should be recorded and noted whenever the results are reported.
Standard

NONDESTRUCTIVE TESTS

1991-02-01
HISTORICAL
J358_199102
Nondestructive tests are those tests which detect factors related to the serviceability or quality of a part or material without limiting its usefulness. Material defects such as surface cracks, laps, pits, internal inclusions, bursts, shrink, seam, hot tears, and composition analysis can be detected. Sometimes their dimensions and exact location can be determined. Such tests can usually be made rapidly. Processing results such as hardness, case depth, wall thickness, ductility, decarburization, cracks, apparent tensile strength, grain size, and lack of weld penetration or fusion may be detectable and measurable. Service results such as corrosion and fatigue cracking may be detected and measured by nondestructive test methods. In many cases, imperfections can be automatically detected so that parts or materials can be classified.
Standard

CRANE AND CABLE EXCAVATOR BASIC OPERATING CONTROL ARRANGEMENTS

1977-03-01
HISTORICAL
J983_197703
This SAE Recommended Practice applies to mobile, construction type, crane and cable excavator band and foot controls. It should not be construed to limit the use of, or to apply to combination controls, automatic controls, or any other special operating control requirements.
Standard

Glossary of Vehicle Networks for Multiplexing and Data Communications

1997-09-01
CURRENT
J1213/1_199709
This document covers the general terms and corresponding definitions that support the design, development, implementation, testing, and application of vehicle networks. The terminology also covers some terms and concepts of distributed embedded systems, network hardware, network software, physical layers, protocols, and other related areas.
Standard

GLOSSARY OF VEHICLE NETWORKS FOR MULTIPLEXING AND DATA COMMUNICATIONS

1991-06-01
HISTORICAL
J1213/1_199106
This SAE Information Report provides definition for terms (words and phrases) which are generally used within the SAE in describing network and data communication issues. In many cases, these definitions are different from those of the same or similar terms found in nonautomotive organizations, such as the Institute of Electrical and Electronic Engineers (IEEE). The Vehicle Networks for Multiplexing and Data Communications committee has found it useful to collect these specific terms and definitions into this document so documents related to the multiplexing and data communications issues will not need an extensive definitions section. This document is intended to be the central reference for terms and definitions related to multiplexing and data communications and as such is intended to apply equally to Passenger Car, Truck and Bus, and Construction and Agriculture organizations within SAE.
Standard

Force and Moment Test Method

1998-01-01
HISTORICAL
J1987_199801
This SAE Recommended Practice describes the determination of passenger car and light truck tire force and moment properties on a belt-type flat surface test machine. It is suitable for accurately determining five tire forces and moments in steady-state under free-rolling conditions as a function of slip angle and normal force which are incrementally changed in a given sequence.
X