Refine Your Search

Search Results

Viewing 1 to 17 of 17
Journal Article

Visual Recovery and Discomfort Following Exposure to Oncoming Headlamps

2009-04-20
2009-01-0546
A field experiment was performed to measure the effects of oncoming illuminance profiles with different photometric and temporal characteristics on visual recovery and subjective discomfort. Target detection time was correlated with the dosage, and rated discomfort was correlated with the peak illuminance of each profile. Older subjects generally had longer recovery times, but there were no differences between the age groups in terms of rated discomfort. The results suggest that discomfort glare is not predictive of visual disability and that control of luminous intensity at isolated points within the distribution of headlamps alone is not sufficient to minimize glare recovery.
Journal Article

Headlamp Levelness and Glare: Preliminary Analyses Based on Field Data

2013-04-08
2013-01-0749
Vehicle headlamps are essential for driver safety at night, and technological evolution of headlamps over several decades has brought substantial improvements to driver visibility and comfort. Nonetheless, glare remains an important concern among many in the driving public, perhaps even more so in North America, where requirements for headlamps differ from those in much of the rest of the world. In most of the world, headlamps producing higher luminous flux are required to have automatic leveling and cleaning systems, thought to help reduce glare. The arrival of headlamp systems in the worldwide marketplace with luminous flux values just below those triggering requirements for leveling and cleaning systems will bring new questions about the causes of and countermeasures for glare.
Technical Paper

Rear Signal Lighting: From Research to Standards, Now and in the Future

2007-04-16
2007-01-1229
Rear signal lighting on vehicles has two primary functions: informing other drivers about the presence of a vehicle on the roadway, and alerting those other drivers to intentions of a vehicle's driver before actions such as turning or stopping occur. In the present paper, reports, articles and other technical literature, pertaining to rear lighting signal system photometric requirements and use of dynamic display features, are reviewed. The objective is to synthesize recommendations for configuring rear lighting in order to optimize systems for different ambient weather and lighting conditions, dirt accumulation, and warning functions. Research results from European, North American and Japanese contexts are discussed.
Technical Paper

Evaluation of Automotive Stop Lamps Using Incandescent and Sweeping Neon and LED Light Sources

2001-03-05
2001-01-0301
This paper describes a study of visual responses to center high mounted stop lamps (CHMSLs) using a newly developed sweeping neon lamp. This study compares sweeping neon, incandescent, and light-emitting diode (LED) technologies. The incandescent CHMSL was a conventional after-market CHMSL brake light. The sweeping neon CHMSL used a novel controller whereby the luminous signal started at the center of the neon tube and grew in a “sweeping” motion outward toward the ends of the tube at an adjustable rate. The sweeping LED CHMSL had a segmented display simulating the sweeping characteristics of the neon CHMSL. Both the neon and LED CHMSLs had faster onset times than the incandescent CHMSL. Experimental subjects performed a tracking task cognitively similar to driving, and released a flip switch upon detecting the onset of the CHMSLs, which were mounted so as to be seen peripherally.
Technical Paper

Evaluation of High-Intensity Discharge Automotive Forward Lighting

2001-03-05
2001-01-0298
An experimental field investigation is described that compares off-axis (peripheral) visual performance between high-intensity discharge (HID) forward lighting and halogen systems. The goal of the investigation is to determine if the higher off-axis intensity levels combined with the spectral properties of HID lamps provide any benefits to visual performance over conventional tungsten halogen lamps. In this study three current production European headlamp systems, one HID and two halogen, are compared. These systems are used to illuminate a fixed scene. Subjects perform a visual tracking task, cognitively similar to driving, while simultaneously small targets located at various angles in the periphery are activated. Subjects release a switch upon detection and reaction times and missed signals are measured.
Technical Paper

Headlamp Parameters and Glare

2004-03-08
2004-01-1280
New headlamp sources and optical designs are creating new glare scenarios on today's roadways. Recent evidence suggests that the spectral content of vehicle forward lighting may play a role in the glare that it produces. Additionally, there is concern that the decreasing size of some headlamp systems may be contributing to glare. This paper describes a field experiment designed to take a fresh look at headlamp glare, both disability and discomfort, by exploring the role of illuminance, spectrum, and size and determining the relative magnitude of each as it affects oncoming glare. Subjects seated in a test vehicle were exposed to small targets at various angles. Test glare headlamps were positioned 50 m in front of the subject at an angle of 5°, simulating oncoming traffic. The glare intensity at the subject's eye, the spectrum of the glare source (among high intensity discharge, halogen, and blue filtered), and the glare source size were systematically varied.
Technical Paper

Discomfort and Disability Glare from Halogen and HID Headlamp Systems

2002-03-04
2002-01-0010
Illumination from high intensity discharge (HID) headlamps differs from halogen headlamp illumination in two important ways: HID headlamps have higher overall light output and a spectral power distribution that differs from halogen headlamps. These differences have been hypothesized to result in superior visibility with HID headlamps and most particularly in the periphery. These same factors, though, have also been conjectured to result in increased glare for drivers facing HID headlamps in oncoming driving situations. The present paper outlines a series of experimental investigations using halogen, HID, and blue-filtered halogen illumination to measure their relative impact on discomfort glare and disability glare under conditions matching those that might be experienced by oncoming drivers at night. Discomfort glare is determined using the scale devised by de Boer; disability glare is determined by measuring subjects' contrast sensitivity under different lighting conditions.
Technical Paper

Visual Benefits of High-Intensity Discharge Automotive Forward Lighting

2002-03-04
2002-01-0259
Recent studies have shown that high-intensity discharge (HID) headlamps provide visual benefits to the vehicle operator that may lead to greater nighttime driving safety.[1] This paper is an extension of that work to further examine the role of beam pattern. An experimental field investigation is described that explores the visual performance aspects of HID forward lighting systems meeting North American beam pattern standards. This study further explores and quantifies the overall benefits of HID systems by direct comparison to conventional halogen systems. It examines and compares two systems producing typical Society of Automotive Engineers (SAE) J1383 beam patterns. Subjects perform a visual tracking task, cognitively similar to driving, while seated in the driver's seat of a test vehicle. Simultaneously, small targets located at various angles in the periphery are activated, with subjects releasing a switch upon detection so that reaction times can be measured.
Technical Paper

Visual Benefits of Blue Coated Lamps for Automotive Forward Lighting

2003-03-03
2003-01-0930
A research project has been completed to determine if commercially available blue coated lamps provide visual benefit for nighttime driving over standard tungsten halogen lamps. As an esthetic option, tungsten halogen lamps with an absorptive coating have been developed to mimic the appearance of HID lamps. The transmission of these coated lamp results in a continuous output spectrum, like standard tungsten halogen, but with a lower “yellow” content, giving an appearance similar to HID lamps. Aside from esthetic reasons for using blue coated lamps, there is also evidence that the spectral output may provide visual benefits over standard tungsten halogen lamps in nighttime driving. While driving at night, off-axis or peripheral vision is in the mesopic response range and the eye's sensitivity shifts towards shorter wavelengths or “blue” light.
Technical Paper

Luminance versus Luminous Intensity as a Metric for Discomfort Glare

2011-04-12
2011-01-0111
Photometric performance specifications for vehicle headlamp specifications in North America are given in terms of luminous intensity values at various angular locations with the objective of providing sufficient illumination for forward visibility while controlling for glare toward oncoming and preceding vehicle drivers. Abundant evidence suggests that luminous intensity is an appropriate metric for characterizing the degree to which a headlamp can produce disability glare through veiling luminances under a wide range of viewing conditions. Notwithstanding that discomfort glare exhibits a differential spectral sensitivity from the photopic luminous efficiency function used to characterize light, luminous intensity does not always predict discomfort glare. For example, the luminance of the luminous element(s) can be more predictive of discomfort when headlamps are viewed from relative close distances.
Technical Paper

Discomfort Glare from Headlamps: Interactions Among Spectrum, Control of Gaze and Background Light Level

2003-03-03
2003-01-0296
Discomfort glare while driving at night might have implications for long-term fatigue and ultimately, driving performance and safety. The intensity of oncoming headlights, their spectral power distribution, the location of the lights in the field of view, and the ambient illumination conditions can all impact feelings of discomfort while driving at night. Not surprisingly, light sources with higher intensities are perceived as more glaring. Similarly, perceptions of discomfort increase as the ambient lighting conditions are reduced, and as the glare sources are located closer to the line of sight. Recent research also appears to demonstrate the role of short-wavelength light in contributing to the discomfort glare response. The present paper outlines a laboratory study to probe the effects of ambient light level, spectral power distribution, and control of gaze on discomfort glare, and potential interactions among these factors.
Technical Paper

Driving in Snow: Effect of Headlamp Color at Mesopic and Photopic Light Levels

2001-03-05
2001-01-0320
Many individuals believe that yellow headlights are preferable to white headlights when driving at night during a snowfall. Although evidence exists to support the claim that yellow light can be perceived as less “glaring” or “distracting” than white light of equal luminance, it is not clear whether backscattered light of different colors are differentially effective for driver comfort or for driver performance. This study investigates a potential mechanism that could support the supposed benefit of yellow headlamps for reducing the detrimental effects of backscattered light to drivers at night. The results suggest that under low light levels when the visual field is dominated by a dynamic field of visual “noise” (like that caused by backscattered light from falling snow), performance of a tracking task similar to driving is reduced in accordance with the scotopic (rod-stimulating) content of the visual noise.
Technical Paper

Flashing Emergency Lights: Influence of Intensity, Flash Rate and Synchronization on Driver Visibility, Comfort and Confidence

2022-03-29
2022-01-0801
Flashing emergency and warning lights are critical elements of public safety and traffic control during roadway incidents. These lights should not only alert drivers to their presence, but also should inform them of who and what is present on the scene, and should help to manage the responses of drivers as they navigate past the incident. First responder and driver safety depend upon all three of these functions, yet standards focus almost entirely on alerting drivers. A full-scale outdoor field study was carried out during daytime, during nighttime on dry pavement and during nighttime on wet pavement, using a mock-up roadside scene containing three police vehicles. The lights on the vehicles were adjusted to produce different levels of intensity, flash rate, and synchronization of lights across all three vehicles. In some cases, sequentially flashing lights were present.
Technical Paper

Methods for Assessing the Impact of Oncoming Glare on Driving Behavior

2005-04-11
2005-01-0442
Glare from oncoming vehicles while driving at night impairs visibility through the mechanism of scattered light in the eyes, which reduces the luminance contrast of objects in the field of view, and through the mechanism of increasing the visual adaptation level, which decreases visibility following glare exposure. Glare can also cause discomfort, which is most commonly assessed experimentally through the use of subjective rating scales. The present paper reports on an investigation of methods to assess glare's impact on driving behavior in a naturalistic setting. Vehicles belonging to drivers were instrumented with a photosensor to estimate the glare illuminance, as well as sensors for monitoring speed, acceleration, braking status, lane position and other attributes. Data from all of these instruments were collected and stored.
Journal Article

Influence of Background Spectral Distribution on Perceptions of Discomfort Glare

2020-04-14
2020-01-0637
The advent of light-emitting diode (LED) technology for automotive lighting allows flexibility of the spectral distribution of forward headlighting systems, while meeting current requirements for “white” illumination. As vehicle headlights have become whiter (with more short-wavelength light output) over the past several decades, their potential impacts on visual discomfort for oncoming and preceding drivers have been hotly debated. It is known that a greater proportion of short-wavelength energy increases discomfort glare, and that increasing the background light level (e.g., through roadway lighting) will decrease perceptions of discomfort. More recently it has been demonstrated that the visual system exhibits enhanced short-wavelength sensitivity for perceptions of scene brightness.
Technical Paper

Headlight Glare Exposure and Recovery

2005-04-11
2005-01-1573
There is concern that the greater light output and increased beam pattern widths of some headlamp systems may be resulting in higher glare exposures to drivers for longer times. A set of experiments is described that examines how headlamp glare exposure affects recovery time and ratings of discomfort. Theoretical glare exposures were examined to study different aspects of glare, namely peak glare illuminance and total glare dosage. Glare exposures corresponding to representative tungsten halogen (TH) and high intensity discharge (HID) systems were also examined. It was found that the shape of the glare profile had a significant effect on recovery time. A larger dose of glare (product of illuminance and exposure time) results in a longer recovery time. It was also found that discomfort ratings are dependent on glare profile, with greater discomfort being proportional to larger peak illuminances. Surprisingly, no effect of glare duration or dosage was found on discomfort.
Technical Paper

Investigating the Influence of Headlight Glare and Aim on Risk-Related Driving Behavior

2017-03-28
2017-01-1360
Nighttime driving cannot be accomplished without vehicle headlighting. A growing body of evidence demonstrates the role of lighting on visual performance and in turn on nightttime driving safety in terms of crashes. Indirect impacts of lighting via comfort or other factors are less well understood, however. A two-part field study using real-world drivers of an instrumented vehicle was conducted to assess the potential role of oncoming headlight glare as a factor in driving behaviors that might be related to increased crash risks. In the first part of the study, drivers' behaviors when navigating through roadway intersections having different levels of crash risk were recorded in order to identify responses that were correlated with the risk level. In the second part, drivers were exposed to different levels of glare from oncoming headlights; several of the same risk-related behaviors identified in the first part of the study were exhibited.
X