Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

LIDAR and Infrared Cameras for ADAS and Autonomous Sensing

This course examines ADAS and autonomous vehicle technologies that offer the potential to increase safety while attempting to optimize the cost of car ownership. LIDAR (light detection ranging) and Infrared camera sensing are seeing a rapid growth and adoption in the industry. However, the sensor requirements and system architecture options continue to evolve almost every six months. This course will provide the foundation to build on for these two technologies in automotive applications. It will include a demonstration model for LIDAR and Infrared camera.
Training / Education

LIDAR for ADAS and Autonomous Sensing

Advanced Driver Assist System (ADAS) and autonomous vehicle technologies have disrupted the traditional automotive industry with potential to increase safety and optimize the cost of car ownership. Light detection and ranging (LIDAR) sensing, a sensing method that detects objects and maps their distances, is seeing rapid growth and adoption in the industry. However, the sensor requirements and system architecture options continue to evolve. This course will provide the foundation to build LIDAR technologies in automotive applications.
Training / Education

Infrared Camera for ADAS and Autonomous Sensing

Advanced Driver Assist System (ADAS) and autonomous vehicle technologies have disrupted the traditional automotive industry with potential to increase safety and optimize the cost of car ownership. Among the challenges are those of sensing the environment in and around the vehicle. Infrared camera sensing is seeing a rapid growth and adoption in the industry. The applications and illumination architecture options continue to evolve. This course will provide the foundation on which to build near infrared camera technologies for automotive applications.
Training / Education

Photogrammetry and Analysis of Digital Media

2024-08-28
Photographs and video recordings of vehicle crashes and accident sites are more prevalent than ever, with dash mounted cameras, surveillance footage, and personal cell phones now ubiquitous. The information contained in these pictures and videos provide critical information to understanding how crashes occurred, and  analyze physical evidence. This course teaches the theory and techniques for getting the most out of digital media, including correctly processing raw video and photographs, correcting for lens distortion, and using photogrammetric techniques to convert the information in digital media to usable scaled three-dimensional data.
Training / Education

Exploration of Machine Learning and Neural Networks for ADAS and L4 Vehicle Perception

2024-07-18
Convolutional neural networks are the de facto method of processing camera, radar, and lidar data for use in perception in ADAS and L4 vehicles, yet their operation is a black box to many engineers. Unlike traditional rules-based approaches to coding intelligent systems, networks are trained and the internal structure created during the training process is too complex to be understood by humans, yet in operation networks are able to classify objects of interest at error rates better than rates achieved by humans viewing the same input data.
Training / Education

Photography for Accident Reconstruction, Product Liability, and Testing

2024-05-14
Many technical projects, most vehicle and component testing, and all accident reconstructions, product failure analyses, and other forensic investigations, require photographic documentation. Roadway evidence disappears, tested or wrecked vehicles are repaired, disassembled, or scrapped, and components can be tested for failure. Photographs are frequently the only evidence that remains of a wreck, or the only records of subjects before or during tests. Making consistently good images during any inspection is a critical part of the evaluation process. 
Video

Mainstream and Main Street Hybrids

2012-03-29
Several technological advancements have enabled hybrid technology to become a viable option in the commercial truck market. Although hybrid trucks are becoming more mainstream, they are not the right alternative fuel solution for every application. When matched with the right duty cycle, hybrid technology can provide a significant cost savings. Due to these advancements and anticipated benefits, hybrid commercial trucks are forecasted to become a significant part of the commercial truck market. Presenter Glenn Ellis, Hino Motors Sales USA Inc.
Video

A Journalist's Perspective on Hybrids

2011-11-04
Automotive journalists are uniquely located to gain a broad perspective of the field. We learn from specialists, the engineers who perform the actual work, in relatively neutral settings. We also communicate with our readers, the ultimate consumers of both your products and ours. Here I propose to share elements of several of these interactions, especially those pertaining to the coming array of plug-in hybrids from GM, Toyota and Porsche. I also propose to give a brief update of KERS, Kinetic Energy Recovery Systems, in Formula 1. Presenter Dennis J. Simanaitis, Road & Track Magazine
Video

Enabling New Optical Fiber Applications in Avionics Networks

2012-03-21
Optical fiber has begun replacing copper in avionic networks. So far, however, it has been mainly restricted to non-critical applications (video transmission to the flight deck, IFE?). In order to take advantage of the high-bandwidth, low weight, no EMI properties of optical fibers in all data transmission networks, it will be necessary to improve the testing. One part of the puzzle, which is still missing, is the self-test button: the possibility to check the network and detect potential failures before they occur. The typical testing tool of a technician involved in optical fiber cables is the ?light source ? optical power meter? pair. With this tool, one can measure the insertion loss of the fiber link. A second important parameter, the return loss at each optical connector, is not analysed. In addition, this is only a global measurement, which does not allow the detection of possible weak points.
Video

Business Model for Successful Commercialization of Aircraft Designs

2012-03-21
This article characterizes the special features of drilling of CFRP/Titanium and -Aluminium stacks. Simplified theoretic models will show how CFRP/Titanium stacks should be machined without scratches and burn marks contacting carbon. Low axial forces and smart chip removal technology are the main characteristics of the drilling tool technology, optimized to reach H8 quality in one shot operation. Presenter Peter Mueller-Hummel, Cutting Tools Inc.
Video

Keynote Presentation: Racing Green Endurance: An EV Record

2012-05-16
The worldwide drive to improved energy efficiency for engine systems is being supported by several engine R&D programs at Southwest Research Institute (SwRI). This research includes large programs in major-market engine categories, such as heavy-duty, non-road, and light-duty; and includes diesel, gasoline, and alternative fuel aspects. This presentation describes several key diesel engine programs being pursued under the SwRI Clean High Efficiency Diesel Engine consortium (CHEDE-VI), whose goal is to demonstrate future diesel technology exceeding 50% brake thermal efficiency. Additionally, SwRI?s High Efficiency Dilute Gasoline Engines consortium (HEDGE-II), is reviewed, where advanced technology for ultra-high efficiency gasoline engines is being demonstrated. The HEDGE-II program is built upon dilute gasoline engine research, where brake thermal efficiencies in excess of 42% are being obtained for engines applicable to the light-duty market. Presenter Charles E.
Video

Automating AFP Tuning Using a Laser Sensor

2012-03-22
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, ?on board? maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Video

NHTSA Lightweighting and Safety Studies

2012-05-29
This paper presents a new concept for a 100% plastic prototype automotive door panel. This concept has the potential of providing a weight reduction of up to 40% compared to conventional steel door panels, but with equivalent performance (static strength). This innovative technology can be used for a variety of exterior automotive parts. The concept includes a composite sandwich panel combination of GFRP (glass fiber reinforced polymer), and LACTIF®, which is expanded beads foam made from PLA (polylactic acid) and developed by JSP Corporation. This GFRP+LACTIF® composite design offers the following characteristics: Excellent environmental resistance Strong adhesion Equivalent static strength (vs. conventional door panels) Design flexibility This concept also offers an alternative to conventional steel door panel systems by using unsaturated polyester material of plant origin as part of the GFRP composite.
Video

Polycarbonate Glazing - Accelerated Wiper Testing, Surface Characterization and Comparison with On-Road Fleet Data

2012-05-23
Exatec� PC glazing technology team, has developed advanced weathering and abrasion resistant coatings technology that can be applied to protect polycarbonate. It is of particular interest to quantify and understand the factors that determine the surface abrasion performance of coated PC in rear window and backlight applications that have a wiper system. In the present study we describe Exatec's lab scale wiper testing equipment and test protocols. We also describe adaptation of optical imaging system to measure contrast and nano-profiling using nano-indenter, as post wiper surface characterization methods. These methods are more sensitive to fine scratches on glazing surface than standard haze measurement and mechanical profilometry. Three coating systems were investigated; Siloxane wetcoat (A), Siloxane wetcoat (B), and Siloxane wetcoat (B) plus plasma coat (Exatec� E900 coating). The performance comparisons were made using all these surface characterization methods.
Journal Article

3D Scene Reconstruction with Sparse LiDAR Data and Monocular Image in Single Frame

2017-09-23
Abstract Real-time reconstruction of 3D environment attributed with semantic information is significant for a variety of applications, such as obstacle detection, traffic scene comprehension and autonomous navigation. The current approaches to achieve it are mainly using stereo vision, Structure from Motion (SfM) or mobile LiDAR sensors. Each of these approaches has its own limitation, stereo vision has high computational cost, SfM needs accurate calibration between a sequences of images, and the onboard LiDAR sensor can only provide sparse points without color information. This paper describes a novel method for traffic scene semantic segmentation by combining sparse LiDAR point cloud (e.g. from Velodyne scans), with monocular color image. The key novelty of the method is the semantic coupling of stereoscopic point cloud with color lattice from camera image labelled through a Convolutional Neural Network (CNN).
Journal Article

Efficient Lane Detection Using Deep Lane Feature Extraction Method

2017-09-23
Abstract In this paper, an efficient lane detection using deep feature extraction method is proposed to achieve real-time lane detection in diverse road environment. The method contains three main stages: 1) pre-processing, 2) deep lane feature extraction and 3) lane fitting. In pre-processing stage, the inverse perspective mapping (IPM) is used to obtain a bird's eye view of the road image, and then an edge image is generated using the canny operator. In deep lane feature extraction stage, an advanced lane extraction method is proposed. Firstly, line segment detector (LSD) is applied to achieve the fast line segment detection in the IPM image. After that, a proposed adaptive lane clustering algorithm is employed to gather the adjacent line segments generated by the LSD method. Finally, a proposed local gray value maximum cascaded spatial correlation filter (GMSF) algorithm is used to extract the target lane lines among the multiple lines.
Journal Article

Uncertainty Analysis of High-Frequency Noise in Battery Electric Vehicle Based on Interval Model

2019-02-01
Abstract The high-frequency noise issue is one of the most significant noise, vibration, and harshness problems, particularly in battery electric vehicles (BEVs). The sound package treatment is one of the most important approaches toward solving this problem. Owing to the limitations imposed by manufacturing error, assembly error, and the operating conditions, there is often a big difference between the actual values and the design values of the sound package components. Therefore, the sound package parameters include greater uncertainties. In this article, an uncertainty analysis method for BEV interior noise was developed based on an interval model to investigate the effect of sound package uncertainty on the interior noise of a BEV. An interval perturbation method was formulated to compute the uncertainty of the BEV’s interior noise.
Journal Article

An Optical-Based Technique to Obtain Vibration Characteristics of Rotating Tires

2019-08-21
Abstract The dynamic characteristics of tires are critical in the overall vibrations of vehicles because the tire-road interface is the only medium of energy transfer between the vehicle and the road surface. Obtaining the natural frequencies and mode shapes of the tire helps in improving the comfort of the passengers. The vibrational characteristics of structures are usually obtained by performing conventional impact hammer modal testing, in which the structure is excited with an impact hammer and the response of the structure under excitation is captured using accelerometers. However, this approach only provides the response of the structure at a few discrete locations, and it is challenging to use this procedure for rotating structures. Digital Image Correlation (DIC) helps in overcoming these challenges by providing the full-field response of the structure.
Journal Article

Effect of Tool Tilt Angles on Mechanical and Microstructural Properties of Friction Stir Welding of Dissimilar Dual-Phase 600 Steel and AA6082-T6 Aluminum Alloy

2020-09-09
Abstract The present study aims to join the dissimilar materials such as Dual-Phase (DP) 600 Steel and AA6082-T6 Aluminum (Al) alloy via the friction stir welding (FSW) process with a reduced intermetallic compound (IMC) layer. The five different tool tilt angles of 0°, 0.5°, 1°, 1.5°, and 2° were selected to fabricate the joints. The weld characteristics such as tensile strength, hardness, macrostructure, and microstructure were analyzed. The weld interface was studied by employing an optical microscope and scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The joint produced with a 0.5° tilt angle has achieved the highest ultimate tensile strength (UTS) of 240 MPa. The IMCs were identified as Fe2Al8 and FeAl2 from the joint interface studies.
X