Refine Your Search

Topic

Search Results

Standard

SURFACE MATCH VERIFICATION METHOD FOR PRESSURE SENSITIVE ADHESIVELY ATTACHED COMPONENTS

1991-12-01
HISTORICAL
J2215_199112
This SAE Recommended Practice applies to evaluation of the conformance match condition existing between two surfaces. Evaluation of this conformance may be especially useful in bonded applications although it may also have relevance to bolted adjacent surface joint conditions. Since good bonding surface conformity is necessary for providing optimal bond performance with pressure sensitive adhesives, the purpose of this document is to provide a method of evaluating the conformance match of the mating surfaces. This document is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this document. Tool types, materials, application tools, and component contact area evaluation methods are included as part of this document.
Standard

Surface Match Verification Method for Pressure Sensitive Adhesively Attached Components

2021-01-07
CURRENT
J2215_202101
This SAE Recommended Practice applies to evaluation of the conformance match condition existing between two surfaces. Evaluation of this conformance may be especially useful in bonded applications although it may also have relevance to bolted adjacent surface joint conditions. Since good bonding surface conformity is necessary for providing optimal bond performance with pressure sensitive adhesives, the purpose of this document is to provide a method of evaluating the conformance match of the mating surfaces. This document is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this document. Tool types, materials, application tools, and component contact area evaluation methods are included as part of this document.
Standard

PNEUMATIC SPRING TERMINOLOGY

1989-06-01
HISTORICAL
J511_198906
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Pneumatic Spring Terminology

2016-04-01
CURRENT
J511_201604
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Recommended Guidelines for Load/Deformation Testing of Elastomeric Components

2017-01-05
CURRENT
J1636_201701
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomeric components under conditions of loading or deforming at a constant rate and to provide guidance concerning test procedures used to define or specify the load/deformation characteristics of elastomeric components. This characteristic is referred to as Static Stiffness. This is also referred to as a "Static Deflection Test."
Standard

RECOMMENDED GUIDELINES FOR LOAD/DEFORMATION TESTING OF ELASTOMERIC COMPONENTS

1993-02-01
HISTORICAL
J1636_199302
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomeric components under conditions of loading or deforming at a constant rate and to provide guidance concerning test procedures used to define or specify the load/deformation characteristics of elastomeric components. This characteristic is referred to as Static Stiffness. This is also referred to as a "Static Deflection Test."
Standard

Testing Dynamic Properties of Elastomeric Isolators

1999-05-01
HISTORICAL
J1085_199905
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
Standard

Testing Dynamic Properties of Elastomeric Isolators

2017-02-09
CURRENT
J1085_201702
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
Standard

GUIDELINES FOR LABORATORY CYCLIC CORROSION TEST PROCEDURES FOR PAINTED AUTOMOTIVE PARTS

1993-10-13
HISTORICAL
J1563_199310
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
Standard

Guidelines for Laboratory Cyclic Corrosion Test Procedures for Painted Automotive Parts

2016-04-05
CURRENT
J1563_201604
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
Standard

ELECTRIC HOURMETER SPECIFICATION

1983-03-01
HISTORICAL
J1378_198303
This SAE Recommended Practice establishes minimum requirements for electric hourmeters for general vehicular applications.
Standard

Metric Ball Joints

2012-10-15
CURRENT
J2213_201210
This SAE Standard covers the general and dimensional data for industrial quality ball joints commonly used on control linkages in metric automotive, marine, construction, and industrial equipment applications.
Standard

Strain-Life Fatigue Data File Format

2018-08-24
CURRENT
J2409_201808
SAE format for a SIMPLE Strain-Life Fatigue Data Exchange File Format. The object of this SAE Standard is to provide a simple common way to exchange strain-life fatigue data collected from ASTM E 606 axial fatigue test data.
Standard

Strain-Life Fatigue Data File Format

2004-11-04
HISTORICAL
J2409_200411
SAE format for a SIMPLE Strain-Life Fatigue Data Exchange File Format. The object of this SAE Standard is to provide a simple common way to exchange strain-life fatigue data collected from ASTM E 606 axial fatigue test data.
Standard

DECORATIVE ANODIZING SPECIFICATION FOR AUTOMOTIVE APPLICATIONS

1993-06-01
HISTORICAL
J1974_199306
Detailed in this SAE Recommended Practice are interior and exterior bright or electrolytically colored anodized aluminum automotive components in the form of seat trim, dashboard, window or side body mouldings, bumpers, wheels, rocker panel, etc.
Standard

Decorative Anodizing Specification for Automotive Applications

2013-03-28
CURRENT
J1974_201303
This SAE Recommended Practice is aimed at ensuring high-quality products of anodized aluminum automotive components in terms of durability and appearance. Decorative sulfuric acid anodizing has been well developed over the last several decades in the aluminum industry. Exterior and interior performance demonstrated that parts processed to this document meet long-term durability requirements. Since the treatment of processing variables is outside the scope of this document, it is important for applicators of this coating to develop an intimate knowledge of their process, and control all parameters that affect the quality of the end product. The use of techniques such as statistical process control (SPC), capability studies, design of experiments, process optimization, etc., are critical to produce material of consistently high quality.
Standard

Multi-Dimensional Thermal Properties of Insulated Heat Shield Material Systems

2003-12-03
HISTORICAL
J2609_200312
This test method measures the system material properties of an insulated formed heat shield under in-vehicle conditions. While the material properties of the individual components can often be determined via existing test methods, the system properties of the entire composite is typically much harder to ascertain (especially for multi-layer shields). System material properties include thermal conductivity in the lateral or in-plane (x) direction, thermal conductivity through the thickness or perpendicular (y), surface emissivity on the top and bottom sides of the shield and specific heat of the shield material.
Standard

Multi-Dimensional Thermal Properties of Insulated Heat Shield Material Systems

2018-08-24
CURRENT
J2609_201808
This test method measures the system material properties of an insulated formed heat shield under in-vehicle conditions. While the material properties of the individual components can often be determined via existing test methods, the system properties of the entire composite is typically much harder to ascertain (especially for multi-layer shields). System material properties include thermal conductivity in the lateral or in-plane (x) direction, thermal conductivity through the thickness or perpendicular (y), surface emissivity on the top and bottom sides of the shield and specific heat of the shield material.
X