Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Modeling and Analysis of Front End Accessory Drive System with Overrunning Alternator Decoupler

2020-04-14
2020-01-0398
The generator is an important loaded component of an engine front end accessory drive system (EFEADS). With a huge moment of inertia and a highest running speed, the vibration and noise often occurs in operation, which has an effect on the service life. Thus an overrunning alternator decoupler (OAD) is used in the EFEADS for reducing the vibration of system. In this paper, a model of EFEADS with an OAD is established. The impact of the OAD on the dynamic responses of pulley of generator and the system are analyzed, and is verified by bench experiments. And the influence of parameters, such as spring stiffness, moment of inertia of generator and loaded torque on the dynamic performances of the system are studied. The influence of misalignment in pulleys on the dynamic performance of system is also discussed. The presented method is useful for optimizing the dynamic performance of system, such as the oscillation of tensioner arm and the slip ratio of the belt-generator pulley.
Technical Paper

Analysis for Dynamic Performances of Engine Front End Accessory Drive System under Accelerating Condition

2020-04-14
2020-01-0399
A model for a generic layout of an engine front end accessory drive system is established. The dynamic performances of the system are obtained via a numerical method. The dynamic performances consist of the oscillation angle of tensioner arm, the slip ratio of each pulley and the dynamic belt tension. In modeling the system, the hysteretic behavior of an automatic tensioner, the loaded torque of the accessory pulley versus the engine speed, the torsional vibration of crankshaft and the creep of the belt are considered. The dynamic performances of the system at steady state and under accelerating condition are analyzed. An example is provided to validate the established model. The measured results show that the torsional vibration of crankshaft is larger and the dynamic performances of the system are different under accelerating conditions, though the acceleration is small.
Journal Article

Experimental and Calculation Analysis of Rotational Vibration for an Engine Front End Accessory Drive System

2011-05-17
2011-01-1534
Experimental methods for measuring static and dynamic characteristics of an engine Frond End Accessory Drive System (FEADS) are presented. The static performance of a FEADS is the static tension of the belt, and the dynamic properties of a FEADS are transverse vibration of belt, and rotational vibration performances that include rotational response of pulleys and tensioner arm, dynamic tension of belt span, slip factor between belt and pulley. A mathematical model and calculation method for rotational vibration analysis of a 8 pulley-belt FEADS is established. In the model, creeping effect of a belt on pulley wrap arc, viscous damping and dry friction of a tensioner are considered. In calculation of dynamic performances of the FEADS, the excitation torques with multi-frequency components from crankshaft torsional vibration are obtained from the measurement.
Technical Paper

Research on Brake Comfort Based on Brake-by-Wire System Control

2022-03-29
2022-01-0912
The vehicle will produce certain shock and vibration during the braking process, which will affect the driving experience of the driver. Aiming at the problems of pitch vibration, longitudinal vibration and shock during the braking process, this paper proposes a planning and following control method for target longitudinal acceleration in post-braking phase, and designs control trigger strategies. Target longitudinal acceleration planning takes minimizing longitudinal shock as the design goal. The following control takes the brake pressure as the control object, and adopts the “feedforward +PID feedback” method to follow the target longitudinal acceleration. Besides, considering the safety of braking process, the trigger condition of control is designed which utilizes BP neural network method to judge whether the control has to be triggered. Based on Simulink software, the simulation model of straight-line braking is established.
Technical Paper

Mass Flow Rate Prediction of Electronic Expansion Valve Based on Improved Particle Swarm Optimization Back-Propagation Neural Network Algorithm

2022-03-29
2022-01-0181
Electronic expansion valve as a throttle element is widely used in heat pump systems and flow characteristics are its most important parameter. The flow characteristics of the electronic expansion valve (EXV) with a valve port diameter of 3mm are studied, when the refrigerant R134a is used as the working fluid. The main factors affecting the flow characteristics are researched by adopting the orthogonal experiment method and single factor control method, for example, inlet pressure, inlet temperature, outlet pressure and valve opening. The results show that the expansion valve opening degree has the greatest influence on mass flow rate. In view of the complicated phase change of the refrigerant passing through electronic expansion valve, it is difficult to model the flow characteristics accurately.
Technical Paper

Fatigue Life Prediction Method for Natural Rubber Material Based on Extreme Learning Machine

2022-03-29
2022-01-0258
Uniaxial fatigue tests of rubber dumbbell specimens under different mean and amplitude of strain are carried out. An Extreme Learning Machine (ELM) model optimized by Dragonfly Algorithm (DA) is proposed to predict the fatigue life of rubber based on measured rubber fatigue life data. Mean and amplitude of strain and measured rubber fatigue life are taken as input variables and output variables respectively in DA-ELM model. For comparison, genetic algorithm (GA) and particle swarm optimization (PSO) are used to optimize ELM parameters, and GA-ELM and PSO-ELM models are established. The comparison results show that DA-ELM model performs better in predicting the fatigue life of rubber with least dispersion. The coefficients of determination for the training set and test set are 99.47% and 99.12%, respectively. In addition, a life prediction model equivalent strain amplitude as damage parameter is introduced to further highlight the superiority of DA-ELM model.
Technical Paper

Modeling and Analysis of the Hysteresis Behavior of the Tensioner

2022-03-29
2022-01-0609
The tensioner of the engine front end accessory drive system was taken as a study object, and the mechanical structure and working principle of the automatic tensioner were analyzed. The hysteresis behavior test of tensioner torque-angular displacement was carried out, and the effects of different excitation frequencies and excitation amplitudes on the hysteresis behavior of the tensioner were analyzed. According to the modified Dahl hysteresis model, the model parameters of the tensioner was identified. Based on the identified model parameters, the hysteresis behavior of the tensioner was calculated, and the calculation model accuracy was verified with the tested results. The influence of the hysteresis curve transition area exponent on the tensioner behavior was studied. The dynamic behavior of the engine front end accessory drive system was simulated using the simulation software.
Technical Paper

Design of Isolation Pulley in Front of Crankshaft to Reduce Vibrations of Front End Accessory Drive System

2015-06-15
2015-01-2254
The driving pulley is often used as a Torsional Vibration Damper (TVD) for the crankshaft in the front end accessory drive (FEAD) system. Although the crankshaft torsional vibrations are dampened, they are transmitted to the belt transmission and therefore to the driven accessories. The isolation pulley is a new device to reduce the belt tension fluctuation by isolating the belt transmission from the crankshaft torsional vibrations. A five-pulley system with isolation pulley is presented and a non-linear model is established to predict the dynamic response of the pulleys, tensioner motion, tension fluctuation and slippage. The model works in the time domain with Runge-Kutta time-stepping algorithm. The numerical simulation results of harmonic excitations show that the amplitudes of the belt tension fluctuation and the vibrations of each component are reduced significantly. Moreover, the effect of isolation pulley parameters on the system natural frequencies is demonstrated.
Technical Paper

Modeling and Validation for the Hysteretic Behavior of an Automatic Belt Tensioner

2019-06-05
2019-01-1546
An automatic tensioner used in an engine front end accessory drive system (EFEADS) is taken as a study example in this paper. The working torque of the tensioner, which consists of the spring torque caused by a torsional spring and the frictional torques caused by the contact pairs, is analyzed by a mathematic analysis method and a finite element method. And the calculation and simulation are validated by a torque measurement versus angular displacement of a tensioner arm. The working torques of the tensioner under a loading and an unloading process are described by a bilinear hysteretic model, and are written as a function with a damping ratio. The rule of the action for the damping devices is investigated based on the simulation and a durability test of the tensioner. A finite element method for the tensioner without damping device is established. Then the radial deformation for the torsional spring under an unconstrained state is obtained.
Technical Paper

Modeling and Analysis for Dynamic Performances of a Two-Layer Engine Front End Accessory Drive System with an Overrunning Alternator Decoupler

2021-04-06
2021-01-0656
Two-layer engine front end accessory drive systems (TEFEADS) are adopted generally by commercial vehicles due to the characteristics of the accessory pulleys, which have large torque and moment of inertia. An overrunning alternator decoupler (OAD) is an advanced vibration isolator which can reduce the amplitude of torsional vibration of alternator rotor effectively by an one-way transmission and they are more and more widely used in vehicles. This paper established a model of a generic layout of a TEFEADS with an OAD. The coupling effect between the TEFEADS, the nonlinear characteristics of OAD, the torsional vibration of crankshaft and the creeping on the belt were taken into account. A nine pulleys model was provided as a study example, the dynamic responses, which are respectively under steady and accelerating conditions, of the system were calculated by the established method and compared with the bench experiment.
Technical Paper

The Analytical Method for Calculating the Hysteretic Behavior of an Asymmetry Tensioner

2021-04-06
2021-01-0655
An automatic tensioner with an asymmetric damping structure used in an engine front end accessory drive system is analyzed. An analytical model is established to calculate the hysteretic behavior of the tensioner. The contact characteristics of contact pairs are modeled and investigated for disclosing relation between contact pair, friction and hysteretic loop of an automatic belt tensioner. The presented models are validated by a torque measurement versus angular displacement of a tensioning arm. The errors between the calculation and the measurement are analyzed. The working torques of the tensioner during loading and unloading process are described by a bilinear hysteretic model and are written as a function with a damping ratio. The influence of damping structure parameters on the hysteretic torque is investigated. The method presented in this paper can be used for predicting the nonlinear characteristics of a tensioner before prototyping.
Technical Paper

Parameters Identification of Mooney-Rivlin Model for Rubber Mount Based on Surrogate Model

2023-05-08
2023-01-1150
As an important vibration damping element in automobile, the rubber mount can effectively reduce the vibration transmitted from the engine to the frame. In this study, a method of parameters identification of Mooney-Rivlin model by using surrogate model was proposed to more accurately describe the mechanical behavior of mount. Firstly, taking the rubber mount as the research object, the stiffness measurement was carried out. And then the calculation model of the rubber mount was established with Mooney-Rivlin model. Latin hypercube sampling was used to obtain the force and displacement calculation data in different directions. Then, the parameters of the Mooney-Rivlin model were taken as the design variables. And the error of the measured force-displacement curve and the calculated force-displacement curve was taken as the system response. Two surrogate models, the response surface model and the back-propagation neural network, were established.
Technical Paper

Analysis of the Dynamic Performance of an Engine Front End Accessory Drive System with an Asymmetric Damping Tensioner

2020-04-14
2020-01-0409
The automatic tensioner is an important component of the engine front end accessory drive system (EFEADS). It maintains the tension of the belt steadily and reduces the slip of pulley, which is benefit for improving the life of V-ribbed belt. In this paper, an EFEADS model is established which is considering with the hysteretic behavior and the asymmetry of friction damping of a tensioner. A four-pulley EFEADS is taken as a study subject. The dynamic responses of system, such as the oscillation angle of each pulley, the slip factor of pulley, the oscillation of tensioner arm and the dynamic belt tension are analyzed with symmetric damping and asymmetric damping tensioner. Meanwhile, the influence of asymmetric damping factors of tensioner on the dynamic response of EFEADS is also investigated.
Technical Paper

Design of a Car Battery Box with Combined Steel Stamped and Aluminum Extruded Process

2023-04-11
2023-01-0607
In the manufacturing of battery boxes using the aluminum extruded process, poor consistency of products and a short life of the die for making aluminum structural sections are usually observed. A new method of producing battery boxes is proposed that combines steel stamped and aluminum extruded process. This paper first describes the design requirements for a battery box using a new process, and several important issues such as weld seam arrangement and error proofing in the manufacturing process are discussed. To address the issue of weld seam arrangement, the following three principles should be considered in the design: These principles include that the profile lap angle should be above 90°, three or more beams should not be lapped too closely together, and multiple brackets in close proximity should be designed as one unit.
Technical Paper

Analysis of Low-Frequency Brake Noise for Drum Brakes on Semi-Trailers

2024-04-09
2024-01-2895
A road test on semi-trailers is carried out, and accelerations of some characteristic points on the braking system,axles,and truck body is measured,also brake pressure and noise around the support frame is acquired.The measured data was analyzed to determine the causes of the brake noise, and the mechanism of the noise of the drum brake of semi-trailers during low-speed braking was investigated. The following conclusions are obtained: (1) Brake noise of the drum brake of the semi-trailer at low-frequency is generated from vibrations of the brake shoes, axle, and body, and the vibration frequency is close to 2nd natural frequency of the axle. (2) Brake noise is generated from stick-slip motion between the brake shoes and the brake drum, where the relative motion between the brake drum and the brake shoes is changed alternately with sliding and sticking, resulting in sudden changes in acceleration and shock vibration.
Technical Paper

Control Strategy for Semi-Active Suspension Based on Suspension Parameter Estimation

2024-04-09
2024-01-2771
This paper presents an adaptive H2/H∞ control strategy for a semi-active suspension system with unknown suspension parameters. The proposed strategy takes into account the damping force characteristics of continuous damping control (CDC) damper. Initially, the external characteristics of CDC damper were measured, and a forward model and a back propagation (BP) neural network inverse model of CDC damper were proposed using the measured data. Subsequently, a seven-degree-of-freedom vehicle with semi-active suspension system and H2/H∞ controller was designed. Multiple feedback control matrices corresponding to different sprung mass parameter values were determined by analyzing time and frequency domain performance. Finally, a dual observer system combining suspension state and parameter estimation based on the Kalman filter algorithm was established.
X