Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Reduction of Cold-Start Emissions through Valve Timing in a GDI Engine

2016-04-05
2016-01-0827
This work examines the effect of valve timing during cold crank-start and cold fast-idle (1200 rpm, 2 bar NIMEP) on the emissions of hydrocarbons (HC) and particulate mass and number (PM/PN). Four different cam-phaser configurations are studied in detail: 1. Baseline stock valve timing. 2. Late intake opening/closing. 3. Early exhaust opening/closing. 4. Late intake phasing combined with early exhaust phasing. Delaying the intake valve opening improves the mixture formation process and results in more than 25% reduction of the HC and of the PM/PN emissions during cold crank-start. Early exhaust valve phasing results in a deterioration of the HC and PM/PN emissions performance during cold crank-start. Nevertheless, early exhaust valve phasing slightly improves the HC emissions and substantially reduces the particulate emissions at cold fast-idle.
Technical Paper

Fuel Sulfur and Aging Effects on the Oxygen Storage Capacity in Three-Way Catalytic Converters

2003-05-19
2003-01-1874
The catalyst oxygen storage capacities were measured over a test matrix consisted of fuels with 7, 33, 266 and 500 ppm sulfur, and of dynamometer-aged catalysts simulating 4K, 50K and 150K vehicle miles. A methodology was developed to relate the post-catalyst λ sensor response following an engine lean-step-transient to the total oxygen storage sites available. The time resolved NOx concentration profiles (which were most sensitive to the oxygen storage) in the catalyst were measured with the engine operating at λ modulations of various amplitudes and frequencies. The oxygen storage capacity deterioration comprised two multiplicative factors - an age factor which decreased quickly initially (by a factor of 2 from 4K to 50K miles), and then more modestly (by 30% from 50 to 150K miles), and a fuel sulfur factor which decreased by 10% for every 150 ppm increase in sulfur level.
X