Refine Your Search

Search Results

Viewing 1 to 15 of 15
Standard

DEFINITIONS OF ACOUSTICAL TERMS

1978-06-01
HISTORICAL
J1184_197806
This information report provides definitions of acoustical terms relating to sound insulation materials. Appropriate methods of test are being developed by SAE and where applicable, ASTM methods will be referenced.
Standard

Vibration Damping Materials and Underbody Coatings

2014-06-06
CURRENT
J671_201406
The materials classified under this specification are: a Mastic vibration damping materials used to reduce the sound emanating from metal panels. b Mastic underbody coatings used to give protection and some vibration damping to motor vehicle underbodies, fenders, and other parts.
Standard

Test Method for Measuring Thickness of Resilient Insulating Paddings

2017-08-14
CURRENT
J1355_201708
This SAE Recommended Practice describes a laboratory test procedure for measuring the thickness of various resilient insulating padding materials that are used in the automotive industry. Such padding materials may include synthetic or non-synthetic materials, fibrous or cellular materials, high loft or compressed materials, single layer homogeneous or multilayer products, low and high surface density products. Some of these samples may be deformable and elastic, high loft thermal and acoustical fibrous materials, as well. The test method described herein has been developed to establish a means of a uniform procedure for measuring the thickness of different types of samples not only for application to all ground vehicles, but also may be applicable to other situations or conditions. The test method is designed to measure the thickness of flat samples and not formed parts. This test method does not purport to address all of the safety concerns, if any, associated with its use.
Standard

Test Method for Measuring Thickness of Resilient Insulating Paddings

2010-04-14
HISTORICAL
J1355_201004
This SAE Recommended Practice describes a laboratory test procedure for measuring the thickness of various resilient insulating padding materials that are used in the automotive industry. Such padding materials may include synthetic or non-synthetic materials, fibrous or cellular materials, high loft or compressed materials, single layer homogeneous or multilayer products, low and high surface density products. Some of these samples may be deformable and elastic, high loft thermal and acoustical fibrous materials, as well. The test method described herein has been developed to establish a means of a uniform procedure for measuring the thickness of different types of samples not only for application to all ground vehicles, but also may be applicable to other situations or conditions. The test method is designed to measure the thickness of flat samples and not formed parts. This test method does not purport to address all of the safety concerns, if any, associated with its use.
Standard

Laboratory Measurement of the Airborne Sound Barrier Performance of Flat Materials and Assemblies

2010-08-05
HISTORICAL
J1400_201008
This SAE Recommended Practice presents a test procedure for determining the airborne sound insulation performance of materials and composite layers of materials commonly found in mobility, industrial and commercial products under conditions of representative size and sound incidence so as to allow better correlation with in-use sound insulator performance. The frequency range of interest is typically 125 to 8000 Hz 1/3 octave band center frequencies. This test method is designed for testing flat samples, although in some applications the methodology can be extended to evaluate formed parts, pass-throughs, or other assemblies to determine their acoustical properties. For non-flat parts or assemblies where transmitted sound varies strongly across the test sample surface, a more appropriate methodology would be ASTM E90 (with a reverberant receiving chamber) or ASTM E 2249 (intensity method with an anechoic or hemi-anechoic receiving chamber).
Standard

Laboratory Measurement of the Airborne Sound Barrier Performance of Flat Materials and Assemblies

2017-07-13
HISTORICAL
J1400_201707
This SAE Recommended Practice presents a test procedure for determining the airborne sound insulation performance of materials and composite layers of materials commonly found in mobility, industrial and commercial products under conditions of representative size and sound incidence so as to allow better correlation with in-use sound insulator performance. The frequency range of interest is typically 100 to 8000 Hz 1/3 octave-band center frequencies. This test method is designed for testing flat samples with uniform cross section, although in some applications the methodology can be extended to evaluate formed parts, pass-throughs, or other assemblies to determine their acoustical properties. For non-flat parts or assemblies where transmitted sound varies strongly across the test sample surface, a more appropriate methodology would be ASTM E90 (with a reverberant receiving chamber) or ASTM E2249 (intensity method with an anechoic or hemi-anechoic receiving chamber).
Standard

Laboratory Measurement of Random Incidence Sound Absorption Tests Using a Small Reverberation Room

2021-07-13
WIP
J2883
This SAE Recommended Practice describes a laboratory test procedure for measuring the random incidence sound absorption performance of a material or a part in a small size reverberation room by measuring decay rates. The absorption performance may include sound absorption coefficient of the test sample and or the amount of energy absorbed by the test sample. Materials for absorption treatments may include homogeneous materials, nonhomogeneous materials, or a combination of homogeneous, nonhomogeneous, and/or inelastic impervious materials. These materials are commonly installed in the mobility products and in the transportation systems such as ground vehicles, marine products, aircraft, and commercial industry (in industrial and consumer products) to reduce reverberant sound build-up and thus reduce the noise level in the environment by minimizing reflections off of hard surfaces.
Standard

Laboratory Measurement of Random Incidence Sound Absorption Tests Using a Small Reverberation Room

2020-03-04
CURRENT
J2883_202003
This SAE Recommended Practice describes a laboratory test procedure for measuring the random incidence sound absorption performance of a material or a part in a small size reverberation room by measuring decay rates. The absorption performance may include sound absorption coefficient of the test sample and or the amount of energy absorbed by the test sample. Materials for absorption treatments may include homogeneous materials, nonhomogeneous materials, or a combination of homogeneous, nonhomogeneous, and/or inelastic impervious materials. These materials are commonly installed in the mobility products and in the transportation systems such as ground vehicles, marine products, aircraft, and commercial industry (in industrial and consumer products) to reduce reverberant sound build-up and thus reduce the noise level in the environment by minimizing reflections off of hard surfaces.
Standard

Laboratory Measurement of Random Incidence Sound Absorption Tests Using a Small Reverberation Room

2015-04-30
HISTORICAL
J2883_201504
This SAE Recommended Practice describes a laboratory test procedure for measuring the random incidence sound absorption performance of a material or a part in a small size reverberation room by measuring decay rates. The absorption performance may include sound absorption coefficient of the test sample and or the amount of energy absorbed by the test sample. Materials for absorption treatments may include homogeneous materials, nonhomogeneous materials, or a combination of homogeneous, nonhomogeneous, and/or inelastic impervious materials. These materials are commonly installed in the mobility products and in the transportation systems such as ground vehicles, marine products, aircraft, and commercial industry (in industrial and consumer products) to reduce reverberant sound build-up and thus reduce the noise level in the environment by minimizing reflections off of hard surfaces.
X