Refine Your Search

Topic

Search Results

Journal Article

Empirical Investigation on the Effects of Rolling Resistance and Weight on Fuel Economy of Medium-Duty Trucks

2019-08-28
Abstract Vehicle rolling resistance and weight are two of the factors that affect fuel economy. The vehicle tire rolling resistance has a more significant influence than aerodynamics drags on fuel economy at lower vehicle speeds, particularly true for medium- and heavy-duty trucks. Less vehicle weight reduces inertia loads, uphill grade resistance, and rolling resistance. The influence of weight on the fuel economy can be considerable particularly in light- to medium-duty truck classes because the weight makes up a larger portion of gross vehicle weight. This article presents an empirical investigation and a numerical analysis of the influences of rolling resistance and weight on the fuel economy of medium-duty trucks. The experimental tests include various tires and payloads applied on a total of 21vehicle configurations over three road profiles. These tests are used to assess the sensitivity of rolling resistance and weight to the vehicle fuel economy.
Journal Article

Speed Planning and Prompting System for Commercial Vehicle Based on Real-Time Calculation of Resistance

2019-06-25
Abstract When commercial vehicles drive in a mountainous area, the complex road condition and long slopes cause frequent acceleration and braking, which will use 25% more fuel. And the brake temperature rises rapidly due to continuous braking on the long-distance downslopes, which will make the brake drum fail with the brake temperature exceeding 308°C [1]. Meanwhile, the kinetic energy is wasted during the driving progress on the slopes when the vehicle rolls up and down. Our laboratory built a model that could calculate the distance from the top of the slope, where the driver could release the accelerator pedal. Thus, on the slope, the vehicle uses less fuel when it rolls up and less brakes when down. What we do in this article is use this model in a real vehicle and measure how well it works.
Journal Article

TOC

2020-06-25
Abstract TOC
Journal Article

Model-Based Precise Air-Fuel Ratio Control for Gaseous Fueled Engines

2020-10-09
Abstract In this article, an adaptive state estimation algorithm for precise air-fuel ratio (AFR) control is presented. AFR control is a critical part of internal combustion engine (ICE) control, and tight AFR control delivers lower engine emissions, better engine fuel economy, and better engine transient performance. The proposed control algorithm significantly improves transient AFR control to eliminate and reduce the amplitude of the lean and rich spikes during transients. The new algorithm is first demonstrated in simulation (using Matlab/SimulinkTM and GT-PowerTM) and then verified on a test engine. The engine tests are conducted using the European Transient Cycle (ETC) with HoribaTM double-ended dynamometer. The developed algorithm utilizes a nonlinear physics-based engine model in the observer and advanced control principles with modifications to solve real industrial control issues.
Journal Article

Energy Management Strategy of Extended-Range Electric Bus Based on Model Predictive Control

2021-02-26
Abstract An energy management strategy based on model predictive control (MPC) was proposed for the hybrid bus. For the series configuration, MPC was used for power distribution among transmission components. Real-time optimization of the control strategy was achieved, which improved the fuel economy. First, a rule-based energy management strategy was proposed, and the logical thresholds of the stage of charge (SOC) and the demand power were formulated to underlie the subsequent study of the control strategy. Second, an energy management strategy based on global optimization was established where the dynamic programming algorithm was used to determine the SOC optimal reference curve and the limitation of fuel economy. In this way, the target and reference can be provided for the subsequent control strategy. Third, a radial basis neural network speed prediction model based on wavelet transform was formulated.
Journal Article

Sensitivity Analysis of Reinforcement Learning-Based Hybrid Electric Vehicle Powertrain Control

2021-09-23
Abstract Hybrid Electric Vehicles (HEVs) achieve better fuel economy than conventional vehicles by utilizing two different power sources: an internal combustion engine and an electrical motor. The power distribution between these two components must be controlled using some algorithm, be it rule based, optimization based, or reinforcement learning based. In the design of such control algorithms, it is important to evaluate the impact that variations of certain design parameters will have on the system performance, in this case, fuel economy. Traditional methods of sensitivity analysis have been applied to various power flow control algorithms to determine their robustness to the variations of HEV design parameters. This article presents a sensitivity analysis of three power flow control algorithms: twin delayed deep deterministic policy gradient (TD3), deep deterministic policy gradient (DDPG), and adaptive equivalent consumption minimization strategy (A-ECMS).
Journal Article

Investigation of a Model-Based Approach to Estimating Soot Loading Amount in Catalyzed Diesel Particulate Filters

2019-08-26
Abstract In order to meet the worldwide increasingly stringent particulate matter (PM) and particulate number (PN) emission limits, the diesel particulate filter (DPF) is widely used today and has been considered to be an indispensable feature of modern diesel engines. To estimate the soot loading amount in the DPF accurately and in real-time is a key function of realizing systematic and efficient applications of diesel engines, as starting the thermal regeneration of DPF too early or too late will lead to either fuel economy penalty or system reliability issues. In this work, an open-loop and on-line approach to estimating the DPF soot loading on the basis of soot mass balance is developed and experimentally investigated, through establishing and combining prediction models of the NOx and soot emissions out of the engine and a model of the catalytic soot oxidation characteristics of passive regeneration in the DPF.
Journal Article

Study on Vibration Characteristics of the Towbarless Aircraft Taxiing System

2022-02-21
Abstract The civil aircraft nosewheel is clamped, lifted, and retained through the pick-up and holding system of the towbarless towing vehicle (TLTV), and the aircraft may be moved from the parking position to an adjacent one, the taxiway, a maintenance hangar, a location near the active runway, or conversely only with the power of the TLTV. The TLTV interfacing with the nose-landing gear of civil transport aircraft for the long-distance towing operations at a high speed could be defined as a towbarless aircraft taxiing system (TLATS). The dynamic loads induced by the system vibration may cause damage or reduce the certified safe-life limit of the nose-landing gear or the TLTV when the towing speed increases up to 40 km/h during the towing operations due to the maximum ramp weight of a heavy aircraft.
Journal Article

TOC

2021-06-07
Abstract TOC
Journal Article

A Method for Turbocharging Single-Cylinder, Four-Stroke Engines

2018-07-24
Abstract Turbocharging can provide a low cost means for increasing the power output and fuel economy of an internal combustion engine. Currently, turbocharging is common in multi-cylinder engines, but due to the inconsistent nature of intake air flow, it is not commonly used in single-cylinder engines. In this article, we propose a novel method for turbocharging single-cylinder, four-stroke engines. Our method adds an air capacitor-an additional volume in series with the intake manifold, between the turbocharger compressor and the engine intake-to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. We analyzed the theoretical feasibility of air capacitor-based turbocharging for a single-cylinder engine, focusing on fill time, optimal volume, density gain, and thermal effects due to adiabatic compression of the intake air.
Journal Article

Energy Consumption Test and Analysis Methodology for Heavy-Duty Vehicle Engine Accessories

2018-10-03
Abstract Fuel economy is a crucial parameter in long-haulage heavy-duty vehicles. Researchers tended to focus initially on engine combustion efficiency, while modern researchers turn their attention to the energy consumption of engine accessories in an attempt to enhance fuel economy. The accessories investigated in this study include the cooling fan, water pump, air compressor, power steering pump, air-conditioning (AC) compressor, and generator. Normally, accessory energy consumption analysis is based on rig data and simulation results. Here, we focus on the disparate test environments between the rig and vehicle to establish a novel steady power test method; the proposed method provides accurate accessory power data under different working conditions. A typical highway driving cycle is selected to collect accessory duty-cycle. The heavy-duty vehicle accessories’ energy consumption distribution under highway road conditions is obtained through the repeated road tests.
Journal Article

Simultaneous NOX and CO2 Reduction for Meeting Future California Air Resources Board Standards Using a Heavy-Duty Diesel Cylinder Deactivation-NVH Strategy

2019-12-10
Abstract Commercial vehicles require continual improvements in order to meet fuel consumption standards, improve diesel aftertreatment (AT) system performance, and optimize vehicle fuel economy. Simultaneous reductions in both CO2 and NOX emissions will be required to meet the upcoming regulatory targets for both EPA Phase 2 Greenhouse Gas Standards and new Low NOX Standards being proposed by the California Air Resources Board (CARB). In addition, CARB recently proposed a new certification cycle that will require high NOX conversion while vehicles are operating at lower loads than current regulatory cycles require. Cylinder deactivation (CDA) offers a powerful technology lever for meeting these two regulatory targets on commercial diesel engines. There have been numerous works in the past year showing the benefits of diesel CDA for elevating exhaust temperatures during low-load operation where it is normally too cold for AT to function at peak efficiency.
Journal Article

Improving Diesel Engine Fuel Efficiency over Transient Cycle Using 1-D Thermodynamic Simulation

2021-09-02
Abstract Air pollution problems persist in many cities throughout the world despite drastic reductions in regulated emissions of vehicle pollutants when tested on a standardized driving cycle. New vehicle emissions regulations in India require the use of a non road transient cycle (NRTC) to confirm vehicles meet specified emission limits. Previous emission norms were comfortably meeting with the mechanical injection system. But the current stringent emission norms require a common rail direct injection (CRDI) system to meet the lower particulate matter (PM) limits. This article discusses on improving the engine fuel efficiency and nitrogen oxides (NOx) emission prediction on a transient cycle using a one-dimensional (1-D) software by coupling Ricardo WAVE and Ricardo Vectis. Engine fuel consumption and emission maps are predicted using Ricardo WAVE. These maps are input into Ricardo IGNITE for predicting cumulative fuel consumption and NOx emission.
Journal Article

Evaluating the Cooling Performance of a Compressed Natural Gas Medium Commercial Vehicle with Water-Cooled Engine Systems—An Approach beyond Regulatory Standards

2021-11-03
Abstract The purpose of the article is to evaluate the cooling performance efficiency of a Compressed Natural Gas (CNG) medium commercial vehicle with a viscous fan, fresh air cleaner, and choked air cleaner in comparison with limits prescribed in the Indian Standard (IS) 14557. Due to the increase in CNG availability, a shift is observed in the market demand for CNG vehicles. The earlier CNG vehicle duty cycle was limited to plain roads and some limited cities, but now vehicles are being used for a short trip to nearby hilly routes thereby shifting the application of the use of a CNG vehicle. CNG vehicles can now be operated in hilly areas where power and torque demand is maximum and operates at lower vehicle speeds and in lower gears. The subjected vehicles are designed for haulage applications to operate with conventional fixed fans, which are permanently engaged, and smaller radiators.
Journal Article

TOC

2022-04-28
Abstract TOC
Journal Article

Performance Evaluation of a Heavy-Duty Diesel Truck Retrofitted with Waste Heat Recovery and Hybrid Electric Systems

2020-03-11
Abstract The interest of long-hauling companies about the conversion of their fleets into low-emission and fuel-efficient vehicles is growing, and retrofitting options may represent a suitable solution. Powertrain hybridization and waste heat recovery are considered among the most promising methods to further improve the fuel economy of road vehicles powered by internal combustion engines. In this article, not only the effect of retrofitting a heavy-duty truck with an electrification-oriented ORC unit or with a series hybrid system is investigated, but also the possibility of implementing both at the same time. The conventional vehicle is powered by a heavy-duty 12.6 liters diesel engine. It is shown that, despite such a large engine has high potential for waste heat recovery, on the other hand it represents a very challenging constraint when designing a hybrid retrofitting.
Journal Article

A Two-Stage Variable Compression Ratio System for Large-Bore Engines with Advanced Hydraulic Control Circuit and Mechanical Locking Device

2021-08-19
Abstract In order to meet upcoming emission targets, an increasing number of ships using Liquefied Natural Gas (LNG) as fuel have been put into service. In this context, many shipowners are particularly interested in the dual-fuel (DF) large-engine technology, which enables ships to operate with both gaseous and conventional liquid fuels. The use of different combustion principles in DF engines requires a layout of the base engine with a relatively low compression ratio (CR) for the gas mode to prevent unstable combustion (knocking). However, this layout leads to disadvantages in the Diesel operation mode, which requires a higher CR for optimal fuel efficiency. Therefore, a two-stage variable compression ratio (VCR) system is a technology particularly suitable for DF engines. It allows to reduce fuel costs by approximately 5.5%.
Journal Article

Full Load Investigation of CNG–Diesel Dual-Fuel Heavy-Duty Engine with Selective Catalytic Reduction on Engine Performance and Emissions for Its Potential Use

2021-09-28
Abstract The application of compressed natural gas (CNG) as fuel for compression ignition (CI) engines under dual-fuel (DF) mode operation is not attempted in countries like India for commercial purposes. A commercial heavy-duty turbocharged six-cylinder common-rail direct-injected diesel engine has been converted into a DF mode of operation using CNG and diesel for its potential usage and study on its performance along with Selective Catalytic Reduction (SCR). CNG is inducted through the intake manifold at varying energy substitution rates (ESR) with a flow rate of 0.67-1.54 kg/h while diesel fuel is controlled through the engine electronic control unit (ECU). For a maximum ESR of 10.2% with CNG, an increase in power by 8.9% and a 5.8% increase in torque were observed. While there was an increase in brake thermal efficiency (BTE), volumetric efficiency marginally decreased, therefore, to have higher brake power with a DF engine, a dedicated turbocharging system is necessary.
Journal Article

TOC

2023-12-18
Abstract TOC
Journal Article

Optimization of Takeaway Delivery Based on Large Neighborhood Search Algorithm

2023-11-09
Abstract The drone logistics distribution method, with its small size, quick delivery, and zero-touch, has progressively entered the mainstream of development due to the global epidemic and the rapidly developing global emerging logistics business. In our investigation, a drone and a delivery man worked together to complete the delivery order to a customer’s home as quickly as possible. We realize the combined delivery network between drones and delivery men and focus on the connection and scheduling between drones and delivery men using existing facilities such as ground airports, unmanned stations, delivery men, and drones. Based on the dynamic-vehicle routing problem model, the establishment of a delivery man and drone with a hybrid model, in order to solve the tarmac unmanned aerial vehicle for take-out delivery scheduling difficulties, linking to the delivery man and an adaptive large neighborhood search algorithm solves the model.
X