Refine Your Search

Topic

Search Results

Journal Article

Evaluation of the Injury Risks of Truck Occupants Involved in a Crash as a Result of Errant Truck Platoons

2020-03-11
Abstract Truck platooning comprises a number of trucks equipped with automated lateral and longitudinal vehicle control technology, which allows them to move in tight formation with short following distances. This study is an initial step toward developing an understanding of the occupant injury risks associated with the multiple sequential impacts between truck platoons and roadside safety barriers, regardless of whether the crash is associated with a malfunction of automated control or human operation. Full-scale crash impacts of a tractor-trailer platoon into a concrete bridge guardrail were simulated for a specific Test Level condition according to the Manual for Assessing Safety Hardware (MASH) standards. The model of the bridge barrier was developed based on its drawings, and material properties were assigned according to literature data.
Journal Article

Hewing Out Evacuation Routes for Burning Buses by Linear-Shaped Charge Jet

2019-01-25
Abstract In recent years, several buses have ignited in some cities in China, causing numerous deaths and significant property damage. However, few research studies have been conducted to deal with such accidents. Therefore, in this work, a linear-shaped charge jet with rectangular cross sections was used to hew out evacuation routes for burning buses, and the parameter design for the shaped charge jet was improved according to asymmetry limitations and human tolerance. A numerical finite element simulation model of the behavior of a jet penetrating the jambs was established using ANSYS/LS-DYNA software. The asymmetrical characteristics of an arc segment in the structure of a rectangular-shaped charge were analyzed, in addition to the influence on the deviations of the jet penetration capacity and blast injuries to occupants caused by the side effects of detonation.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

Separable and Standard Monte Carlo Simulation of Linear Dynamic Systems Using Combined Approximations

2019-01-25
Abstract Reliability analysis of a large-scale system under random dynamic loads can be a very time-consuming task since it requires repeated studies of the system. In many engineering problems, for example, wave loads on an offshore platform, the excitation loads are defined using a power spectral density (PSD) function. For a given PSD function, one needs to generate many time histories to make sure the excitation load is modeled accurately. Global and local approximation methods are available to predict the system response efficiently. Each way has their advantages and shortcomings. The combined approximations (CA) method is an efficient method, which combines the advantages of local and global approximations. This work demonstrates two methodologies that utilize CA to reduce the cost of crude or separable Monte Carlo simulation (MCS) of linear dynamic systems when the excitation loads are defined using PSD functions.
Journal Article

Empirical Investigation on the Effects of Rolling Resistance and Weight on Fuel Economy of Medium-Duty Trucks

2019-08-28
Abstract Vehicle rolling resistance and weight are two of the factors that affect fuel economy. The vehicle tire rolling resistance has a more significant influence than aerodynamics drags on fuel economy at lower vehicle speeds, particularly true for medium- and heavy-duty trucks. Less vehicle weight reduces inertia loads, uphill grade resistance, and rolling resistance. The influence of weight on the fuel economy can be considerable particularly in light- to medium-duty truck classes because the weight makes up a larger portion of gross vehicle weight. This article presents an empirical investigation and a numerical analysis of the influences of rolling resistance and weight on the fuel economy of medium-duty trucks. The experimental tests include various tires and payloads applied on a total of 21vehicle configurations over three road profiles. These tests are used to assess the sensitivity of rolling resistance and weight to the vehicle fuel economy.
Journal Article

Two-Way Coupled CFD Approach for Predicting Gear Temperature of Oil Jet Lubricated Transmissions

2018-07-24
Abstract This article focuses on the development of a two-way coupled methodology to predict gear temperature of oil jet lubricated transmissions using commercial software for computational fluid dynamics simulation. The proposed methodology applies an overset mesh technique to model the gear interlocking motion, multiphase of air-oil mixture, and heat transfer. Two gear pairs were used to develop and validate the methodology, an overdrive helical gear pair of a commercial vehicle transmission and a standard spur gear pair. Different oil jet lubrication methods were investigated using the proposed methodology, such as oil jet directed at the into-mesh position and at the out-of-mesh position. This investigation showed that out of mesh lubrication direction shows better cooling performance which is in well agreement with previous studies of literature.
Journal Article

Detection Method for Cavity Defects in Ballastless Track Structures of High-Speed Railways Based on Air-Coupled Ultrasonic Lamb Waves

2019-07-02
Abstract This study proposes a method for the rapid detection and location of cavity defects in ballastless track structures of high-speed railways in service. First, the propagation law of air-coupled ultrasonic Lamb waves in the ballastless track structure is studied. Theoretical calculation results show that the ultrasonic Lamb wave group velocity of the A2 mode in the track plate is 4000 m/s. Then, the excitation and reception methods of the air-coupled ultrasound are studied. Theoretical and experimental results show that the A2 mode Lamb wave can be generated by the 3.8° oblique incidence of the ballastless track structure. Finally, an experimental system for air-coupled ultrasonic testing is constructed. A pair of air-coupled ultrasonic probes is used to provide excitation and reception Lamb wave signals at an inclined angle of 3.8°, 20 mm away from the surface of the track plate, and 40 mm/step along the scanning direction.
Journal Article

TOC

2020-08-26
Abstract TOC
Journal Article

Evaluating How Functional Performance in Aerospace Components Is Affected by Geometric Variation

2018-06-05
Abstract Geometric variation stemming from manufacturing can be a limiting factor for the quality and reliability of products. Therefore, manufacturing assessments are increasingly being performed during the early stages of product development. In the aerospace industry, products are complex engineering systems, the development of which require multidisciplinary expertise. In such contexts, there are significant barriers against assessing the effects of geometric variation on the functionality of products. To overcome these barriers, this article introduces a new methodology consisting of a modelling approach linked to a multidisciplinary simulation environment. The modelling approach is based on the parametric point method, which allows point-scanned data to be transferred to parameterised CAD models. In a case study, the methodology is implemented in an industrial setting.
Journal Article

Updating the Grade Severity Rating System (GSRS) for Wyoming Mountain Passes: A Description of Tests and Results

2020-05-13
Abstract Truck crashes on Wyoming mountain passes due to brake heating has been a long-standing issue due to the steep downgrades that characterize some routes in the state. The grade severity rating system (GSRS) developed by the Federal Highway Administration (FHWA) to recommend maximum safe speeds has been identified as a viable countermeasure to reducing the incidence of downgrade truck crashes. However, several decades have passed since the GSRS was developed. In the decades since its development, truck features have undergone radical changes in terms of design. The streamlined design of tractors and trailers, use of drag reduction devices, changes in engine features, and adoption of radial tires have led to a reduction in the non-brake forces that retard motion. Truck brakes have also changed along with retarder characteristics. This has meant that maximum safe speeds recommended by the GSRS have been conservative.
Journal Article

Sensitivity Analysis of Heavy Vehicle Air Brake System to Air Leakage

2020-10-12
Abstract Brake systems are one of the essential components of vehicles ensuring the safety of roads and passengers as well as accident prevention. Faulty brake systems, however, can cause inevitable accidents. Fatality analysis reporting system of NHTSA (National Highway Transport Safety Association) has reported that heavy and light trucks, which are obliged to be equipped with dual-circuit air brake system, were, respectively, involved in 8.8% and 38.0% of fatal crashes in the United States, during 2017. Number of heavy vehicle accidents due to complete failure of brake system is far less than accidents due to deficiencies such as worn out brake linings, out-of-adjustment push rod strokes, and leak in the circuits. Severe leakages due to ruptured air hoses or punctured reservoir are highly unlikely to be replenished by compressor and would be distinguished through pressure indicator.
Journal Article

Comparison of Standard Particulate Matter Measurement Techniques to Real-World Wind Tunnel Measurements of Heavy-Duty Diesel Trucks

2020-08-11
Abstract Particulate Matter (PM) is one of the most sought-after exhaust emissions from Heavy-Duty Diesel Engines (HDDEs) to reduce. Several regulations in Europe and North America have led the way in drastically reducing PM of both on-road and off-road engines through stringent adoption of Diesel Particulate Filters (DPFs) and advanced combustion techniques. The effects of these advanced aftertreatment systems were studied using standardized testing procedures and equipment. While PM is defined as a “single” criteria pollutant, its complex structure entails several chemical compounds and molecules, displaying a whole spectrum of particle sizes. In addition, the morphology of some volatile compounds is shown to be affected by the interaction with background air during exhaust dilution and cooling.
Journal Article

Model Reference Adaptive Control of Semi-active Suspension Model Based on AdaBoost Algorithm for Rollover Prediction

2021-11-09
Abstract Due to their large volume structure, when a heavy vehicle encounters sudden road conditions, emergency turns, or lane changes, it is very easy for vehicle rollover accidents to occur; however, well-designed suspension systems can greatly reduce vehicle rollover occurrence. In this article, a novel semi-active suspension adaptive control based on AdaBoost algorithm is proposed to effectively improve the vehicle rollover stability under dangerous working conditions. This research first established a vehicle rollover warning model based on the AdaBoost algorithm. Meanwhile, the approximate skyhook damping suspension model is established as the reference model of the semi-active suspension. Furthermore, the model reference adaptive control (MRAC) system is established based on Lyapunov stability theory, and the adaptive controller is designed.
Journal Article

TOC

2022-09-07
Abstract TOC
Journal Article

Linear and Nonlinear Analysis of Ride and Stability of a Three-Wheeled Vehicle Subjected to Random and Bump Inputs Using Bond Graph and Simulink Methodology

2021-06-07
Abstract Bond graph framework, established with MATLAB/Simulink, has a dual objective: analyze the system using bond graph and develop the system equations in symbolic form. This approach is a combination of the simulation skill of the MATLAB/Simulink and the modelling skill of the bond graph. In this analysis, a nine-degrees-of-freedom (9 DoF) three-wheeled vehicle model integrated with a 5 DoF human subject model is formulated using bond graph methodology and simulated using the Simulink toolbox. The present work is divided into two linear and nonlinear analyses of the dynamic behavior of sprung mass subjected to random and bumps inputs, respectively.
Journal Article

Real-Driving Measurement of Vehicle Interior Air Quality and Cabin Air Filtering Performance by Using Low-Cost Sensors

2022-04-07
Abstract Vehicle interior air quality is usually determined by the levels of in-cabin air pollutants, such as particulate matter (PM), gaseous air pollution (volatile organic compounds [VOCs], oxides of nitrogen [NOx], and carbon monoxide [CO]), and carbon dioxide [CO2], which reflect the freshness of indoor air. Nowadays, cabin air filters play a key role in preventing outdoor air pollutants transporting inside vehicles; hence, in-cabin air quality can be strongly associated with the filtration performance of cabin air cleaning solutions. However, challenges are existing in a standard method for assessing the performance of a cabin air filter in real-life driving conditions. This study is to develop a low-cost mobile test method for monitoring in-vehicle PM and CO2 and evaluating the performances of cabin air filters while driving the vehicles. The results reveal that certain boundary conditions are important to have a proper method for evaluating the particle removal efficiency.
Journal Article

TOC

2020-05-15
Abstract TOC
Journal Article

The Effect of Inlet Valve Timing and Engine Speed on Dual Fuel NG-Diesel Combustion in a Large Bore Engine

2018-04-18
Abstract High load (18 bar IMEP) dual fuel combustion of a premixed natural gas/air charge ignited by directly injected diesel fuel was studied in a large bore gas engine. A nozzle design with low flow rate was installed to inject a small diesel volume (10.4 mm3) equal an energetic amount of about two percent. The effect of compression end temperature on ignition and combustion was investigated using valve timings with early IVC (Miller) and maximum charging efficiency (MaxCC). Furthermore, the engine speed was reduced (1500 rpm to 1000 rpm) for the Miller valve timing to analyze the impact of the chemical time scale on the combustion process. During all experiments, the cylinder charge density was kept constant adjusting the intake pressure and the resulting air mass flow.
Journal Article

Energy Consumption Test and Analysis Methodology for Heavy-Duty Vehicle Engine Accessories

2018-10-03
Abstract Fuel economy is a crucial parameter in long-haulage heavy-duty vehicles. Researchers tended to focus initially on engine combustion efficiency, while modern researchers turn their attention to the energy consumption of engine accessories in an attempt to enhance fuel economy. The accessories investigated in this study include the cooling fan, water pump, air compressor, power steering pump, air-conditioning (AC) compressor, and generator. Normally, accessory energy consumption analysis is based on rig data and simulation results. Here, we focus on the disparate test environments between the rig and vehicle to establish a novel steady power test method; the proposed method provides accurate accessory power data under different working conditions. A typical highway driving cycle is selected to collect accessory duty-cycle. The heavy-duty vehicle accessories’ energy consumption distribution under highway road conditions is obtained through the repeated road tests.
Journal Article

Experimental Investigation of Ethanol-Diesel-Butanol Blends in a Compression Ignition Engine by Modifying the Operating Parameters

2018-10-31
Abstract The rapid utilization of fossil fuels has triggered the finding of alternative renewable fuel that replaces or reduces the consumption by alternative fuels for fueling compression ignition (CI) engines. One such renewable fuel is ethanol which can be manufactured from biomass. The present study details the utilization of an optimum amount of ethanol in CI engine by modifying the operating parameters. It was already published in the previous paper that 45% ethanol can be utilized along with diesel using 10% butanol as cosolvent. This fuel is also meeting the minimum requirement with respect to properties as per ASTM standards. This experimental study was performed to investigate the influence of modifying the engine operating parameters on the performance, combustion, and emission parameters fueled with the blend containing 45% ethanol under various load conditions.
X