Refine Your Search

Topic

Search Results

Journal Article

Development of Safe and Sustainable EPAS (Electric Power Assist Steering) System for Emerging Markets

2018-04-07
Abstract The vehicle attributes developed for emerging markets like India are unique because of different topographical conditions, diversity and culture within the different states. Major attributes in vehicle development process is development of safe and sustainable vehicle systems (steering, brakes etc.) for the driver. India is presently an emerging market for automotive sector. With booming economy, purchasing power of the consumer has gone up in the past few years. Most of young population of India have started buying the cars. At the same time, India’s road infrastructure, vehicle regulations have exalted over the years. The consumer cognizance towards the vehicles have started changing now. They want safer, robust system in their vehicles with new convenience features at affordable cost. In recent years, almost all OEM’s in India have migrated steering systems from HPAS to EPAS for payback on fuel economy and weight.
Journal Article

On WTW and TTW Specific Energy Consumption and CO2 Emissions of Conventional, Series Hybrid and Fully Electric Buses

2018-04-17
Abstract Making use of a specifically designed dynamical vehicle model, the authors here presented the results of an activity for the evaluation of energy consumption and CO2 emissions of buses for urban applications. Both conventional and innovative (series hybrid, and fully electric) vehicles were considered to obtain interesting comparative conclusions. The derived tool was used to simulate the dynamical behaviour of these vehicles on a number of kinematic profiles measured during real buses operation in different contexts, varying from really congested city centre routes to fast-lane operated services. It was so possible to evaluate the energetic performances of those buses on a Tank-to-Wheel (TTW) basis.
Journal Article

Methodology for Developing a Diesel Exhaust After Treatment Simulation Tool

2017-09-16
Abstract A methodology for the development of catalyst models is presented. Also, a methodology of the implementation of such models into a modular simulation tool, which simulates the units in succession, is presented. A case study is presented illustrating how suitable models can be found and used for simulations. Such simulations illustrate the behavior of the individual units and the overall system. It is shown how, by simulating the units in succession, the entire after treatment system can be tested and optimized, because the integration makes it possible to observe the effect of the modules on one another.
Journal Article

Measurement and Analysis of the Operations of Drayage Trucks in the Houston Area in Terms of Activities and Exhaust Emissions

2018-05-22
Abstract The effects of exhaust emissions on public welfare have prompted the US Environmental Protection Agency to take various actions toward understanding, modeling, and reducing air pollution from vehicles. This study was performed to better understand exhaust emissions of heavy-duty diesel-powered tractor-trailer trucks that operate in drayage service, which involves the moving of shipping containers to or from port terminals. The study involved the use of portable emissions measurement systems (PEMS) to measure both gaseous and particulate matter (PM) mass emission rates and record various vehicle and engine parameters from the test trucks as they performed their normal drayage service. These measurements were supplemented with port terminal gate entry/exit logs for all drayage trucks entering the two Port of Houston Authority container terminals.
Journal Article

Sliding Mode Control of Hydraulic Excavator for Automated Grading Operation

2018-06-07
Abstract Although ground grading is one of the most common tasks that hydraulic excavators perform in typical work sites, proper grading is not easy for less-skilled operators as it requires coordinated manipulation of multiple hydraulic cylinders. In order to help alleviate this difficulty, automated grading systems are considered as an effective alternative to manual operations of hydraulic excavators. In this article, a sliding mode controller design is presented for automated grading control of a hydraulic excavator. First, an excavator manipulator model is developed in Simulink by using SimMechanics and SimHydraulics toolboxes. Then, a sliding mode controller is designed to control the manipulator to trace a predefined trajectory for a grading task. For a comparison study, a PI controller is used to control the manipulator to perform a grading task following the same desired trajectory and the performance is compared with those obtained by the sliding mode controller.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

Electrifying Long-Haul Freight—Part I: Review of Drag, Rolling Resistance, and Weight Reduction Potential

2019-09-05
Abstract Electric heavy-duty tractor-trailers (EHDTT) offer an important option to reduce greenhouse gases (GHG) for the transportation sector. However, to increase the range of the EHDTT, this effort investigates critical vehicle design features that demonstrate a gain in overall freight efficiency of the vehicle. Specifically, factors affecting aerodynamics, rolling resistance, and gross vehicle weight are essential to arrive at practical input parameters for a comprehensive numerical model of the EHDTT, developed by the authors in a subsequent paper. For example, drag reduction devices like skirts, deturbulators, vortex generators, covers, and other commercially available apparatuses result in an aggregated coefficient of drag of 0.367. Furthermore, a mixed utilization of single-wide tires and dual tires allows for an optimized trade-off between low rolling resistance tires, traction, and durability.
Journal Article

A Technique of Estimating Particulate Matter Emission in Non-Road Engine Transient Cycle

2020-02-07
Abstract Particulates are a major source of emission from diesel engine. They consist of particles of carbon, sulfates, oil, fuel, and water. These constituents are measured by filtering a sample diluted in a partial- or full-flow tunnel and weighing them. It is a general trend for measuring particulate matter (PM) on cycle basis. But 1-D simulation needs complete PM 3-D contour map considering all engine operating region. It is very tedious work for generating PM on each steady-state point on engine test bed. Hence, Filter smoke meter or opacimeter measurements can be used for estimating PM. Filter smoke meters measured the light reflected from a filter paper through which a known volume of exhaust gas was passed. Opacity meters measure light absorbed by a standard column of exhaust. Both equipments measure visible black smoke comparatively at lower expenditure cost. They are designed to control measurement noise, resolution and repeatability with acceptable accuracy level.
Journal Article

Implementation and Optimization of a Variable-Speed Coolant Pump in a Powertrain Cooling System

2020-02-07
Abstract This study investigates methods to precisely control a coolant pump in an internal combustion engine. The goal of this research is to minimize power consumption while still meeting optimal performance, reliability and durability requirements for an engine at all engine-operating conditions. This investigation achieves reduced fuel consumption, reduced emissions, and improved powertrain performance. Secondary impacts include cleaner air for the earth, reduced operating costs for the owner, and compliance with US regulatory requirements. The study utilizes mathematical modeling of the cooling system using heat transfer, pump laws, and boiling analysis to set limits to the cooling system and predict performance changes.
Journal Article

Aging Effects of Catalytic Converters in Diesel Exhaust Gas Systems and Their Influence on Real Driving NOx Emissions for Urban Buses

2018-06-18
Abstract The selective catalytic reduction (SCR) of nitrogen oxides seems to be the most promising technique to meet prospective emission regulations of diesel-driven commercial vehicles. In the case of developing cost-effective catalytic converters with comparably high activity, selectivity, and resistance against aging, ion-exchanged zeolites play a major role. This study presents, firstly, a brief literature review and subsequently a discussion of an extensive conversion analysis of exemplary Cu/ and Fe/zeolites, as well as a homogeneous admixture of both. The aging stages of SCR catalysts deserve particular attention in this study. In addition, the aging condition of the diesel oxidation catalyst (DOC) was analyzed, which influences the nitrogen dioxide (NO2) formation, because the NO2/nitrogen oxides (NOx) ratio upstream from the SCR converter could be identified as a key factor for low temperature NOx conversion.
Journal Article

Onboard Natural Gas Reforming for Heavy Duty Vehicles

2019-01-07
Abstract Powertrain simulations and catalyst studies showed the efficiency credits and feasibility of onboard reforming as a way to recover waste heat from heavy duty vehicles (HDVs) fueled by natural gas (NG). Onboard reforming involves 1) injecting NG into the exhaust gas recycle (EGR) loop of the HDV, 2) reforming NG on a catalyst in the EGR loop to hydrogen and carbon monoxide, and 3) combusting the reformed fuel in the engine. The reformed fuel has increased heating value (4-10% higher LHV) and flame speed over NG, allowing stable flames in spark ignition (SI) engines at EGR levels up to 25-30%. A sulfur-tolerant reforming catalyst was shown to reform a significant amount of NG (15-30% conversion) using amounts of precious metal near the current practice for HDV emissions control (10 g rhodium). Engine simulations showed that the high EGR levels enabled by onboard reforming are used most effectively to control engine load instead of waste-gating or throttling.
Journal Article

TOC

2020-06-25
Abstract TOC
Journal Article

Experimental Study of Tread Rubber Compound Effects on Tire Performance on Ice

2020-06-16
Mechanical and thermal properties of the rubber compounds of a tire play an important role in the overall performance of the tire when it is in contact with the terrain. Although there are many studies conducted on the properties of the rubber compounds of the tire to improve some of the tire characteristics, such as the wear of the tread, there are a limited number of studies that focused on the performance of the tire when it is in contact with ice. This study is a part of a more comprehensive project looking into the tire-ice performance and modeling. In this study, to understand the effect of different rubber compounds on the tire performance, three identical tires from the same company have been chosen. The tires’ only difference is the material properties of the rubber. Two approaches have been implemented in this study.
Journal Article

Connected Eco-approach and Departure System for Diesel Trucks

2021-02-26
Abstract Diesel trucks play a crucial role in transportation activity and a major contributor to fuel consumption and air pollution. To improve the energy efficiency of diesel trucks, we develop a truck eco-approach and departure (EAD) system based on Signal Phase and Timing (SPaT) message from signal controllers and road grade information along the path. The proposed model consists of two levels—the lower level for powertrain-based fuel consumption estimation and the upper level for optimal trajectory planning. The powertrain model is designed for a diesel engine with a six-gear transmission and well calibrated using on-board Electronic Control Unit (ECU) data. The trajectory planning model is formulated as a shortest path problem with the combination of time, distance, and speed as the state on each node and fuel consumption rate as the cost on state transition.
Journal Article

48V Exhaust Gas Recirculation Pump: Reducing Carbon Dioxide with High-Efficiency Turbochargers without Increasing Engine-Out NOx

2021-08-23
Abstract Regulations limiting GreenHouse Gases (GHG) from Heavy-Duty (HD) commercial vehicles in the United States (US) and European Union will phase in between the 2024 and 2030 model years. These mandates require efficiency improvements at both the engine and vehicle levels, with the most stringent reductions required in the heaviest vehicles used for long-haul applications. At the same time, a 90% reduction in oxides of nitrogen (NOx) will be required as part of new regulations from the California Air Resources Board. Any technologies applied to improve engine efficiency must therefore not come at the expense of increased NOx emissions. Research into advanced engine architectures and components has identified improved turbomachine efficiency as one of the largest potential contributors to engine efficiency improvement. However this comes at the cost of a reduced capability to drive high-pressure Exhaust Gas Recirculation (EGR).
Journal Article

Methodology for Controlling Nitrogen Oxides Emissions during Cold Start

2021-09-02
Abstract The current publication considers several methodologies to minimize tailpipe (TP) nitrogen oxides (NOx) emissions during cold start operation. A standard, 2019 aftertreatment design of diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR)/ammonia oxidation catalyst (AMOX) was used as the baseline. Cold start NOx conversion and TP NOx emissions improvements were measured when a larger SCR, dual diesel exhaust fluid (DEF) dosing, and an electric heater were added to the exhaust configuration. Additional improvements were achieved by an improved cold start combustion mode was developed.
Journal Article

Applying a Driven Turbocharger with Turbine Bypass to Improve Aftertreatment Warm-Up and Diesel Nitrous Oxides Conversion

2021-09-23
Abstract As emissions regulations continue to tighten, both from lower imposed limits of pollutants, such as nitrous oxides (NOx), and in-use and real-world testing, the importance of quickly heating the aftertreatment to operating temperature during a cold start, as well as maintaining this temperature during periods of low engine load, is of increasing importance. Perhaps the best method of providing the necessary heating of the aftertreatment is to direct hot exhaust gasses to it directly from the engine. For heavy-duty diesel engines that utilize turbochargers, this is achieved by fully bypassing the exhaust flow around the turbine directly to the aftertreatment. However, this disables a conventional turbocharger, limiting engine operation to near-idle conditions during the bypass period.
Journal Article

Homogeneous Charge Reactivity-Controlled Compression Ignition Strategy to Reduce Regulated Pollutants from Diesel Engines

2019-03-14
Abstract Reactivity-controlled compression ignition (RCCI) is a dual fuel low temperature combustion (LTC) strategy which results in a wider operating load range, near-zero oxides of nitrogen (NOx) and particulate matter (PM) emissions, and higher thermal efficiency. One of the major shortcomings in RCCI is a higher unburned hydrocarbon (HC) and carbon monoxide (CO) emissions. Unlike conventional combustion, aftertreatment control of HC and CO emissions is difficult to achieve in RCCI owing to lower exhaust gas temperatures. In conventional RCCI, an early direct injection (DI) of low volatile diesel fuel into the premixed gasoline-air mixture in the combustion chamber results in charge stratification and fuel spray wall wetting leading to higher HC and CO emissions. To address this limitation, a homogeneous charge reactivity-controlled compression ignition (HCRCCI) strategy is proposed in the present work, wherein the DI of diesel fuel is eliminated.
Journal Article

Extending the Range of Data-Based Empirical Models Used for Diesel Engine Calibration by Using Physics to Transform Feature Space

2019-03-14
Abstract A new method that allows data-enabled (empirical) models, commonly used for automotive engine calibration, to extrapolate beyond the range of training data has been developed. This method used a physics-based system-level one-dimensional model to improve interpolation and allow extrapolation for three data-based algorithms, by modifying the model input (feature) space. Neural network, regression, and k-nearest neighbor predictions of engine emissions and volumetric efficiency were greatly improved by generating 736,281 artificial feature spaces and then performing feature selection to choose feature spaces (feature selection) so that extrapolations in the original feature space were interpolations in the new feature space. A novel feature selection method was developed that used a two-stage search process to uniquely select the best feature spaces for every prediction.
Journal Article

Investigation of a Model-Based Approach to Estimating Soot Loading Amount in Catalyzed Diesel Particulate Filters

2019-08-26
Abstract In order to meet the worldwide increasingly stringent particulate matter (PM) and particulate number (PN) emission limits, the diesel particulate filter (DPF) is widely used today and has been considered to be an indispensable feature of modern diesel engines. To estimate the soot loading amount in the DPF accurately and in real-time is a key function of realizing systematic and efficient applications of diesel engines, as starting the thermal regeneration of DPF too early or too late will lead to either fuel economy penalty or system reliability issues. In this work, an open-loop and on-line approach to estimating the DPF soot loading on the basis of soot mass balance is developed and experimentally investigated, through establishing and combining prediction models of the NOx and soot emissions out of the engine and a model of the catalytic soot oxidation characteristics of passive regeneration in the DPF.
X