Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Effective Writing for Engineering and Technical Professionals

The ability to write concise and unambiguous reports, proposals, manuals, or other technical documents is a key skill for any high-functioning engineer or technical staff person in the mobility industries. Through a combination of class discussions, interactive workshop activities, assignments, checker teams (review teams) and job aids, this course delivers real-life technical writing techniques and tools that can be immediately applied. Participants discover the importance of knowing their audiences and how to communicate technical information in a 'user-friendly' style.
Video

Flexible Real-Time Simulation of Truck and Trailer Configurations

2011-12-05
Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.
Video

SAE Moves You

2018-07-30
Meet the engineers shaping the world of mobility and driving the future of engineering.
Video

SAE Demo Day in Tampa - City and State Perspectives

2018-08-14
Dramatic changes in transportation are coming. Cities and states looking to be at the forefront and reap the benefits, need an engaged and informed citizenry. Hear how the SAE Demo Day in Tampa supported Florida's AV initiatives and can benefit states nationwide.
Video

SAE programs, products, and services for mobility engineers

2017-05-04
SAE International is the nexus that connects the engineering community for the purpose of life-long learning and the advancement of the mobility industry. It offers programs, products, and services that afford the engineering community limitless opportunities to LEARN, DEVELOP, and CONNECT so together, we can advance industry. Find out more about our events, professional development, and publication products.
Video

Start your lifelong journey with SAE International

2017-06-28
Can you become a visionary or are you born one? How does a visionary capture an opportunity and makes it a successful business? Are engineers more qualified to solve technical problems or run companies? SAE's "The Visionary's Take" addresses these and many other questions, by talking directly with those who have dared to tackle difficult engineering problems, and create real-life products out of their experience. In these short episodes, Sanjiv Singh and Lyle Chamberlain, respectively CEO and Chief Engineer from Near Earth Autonomy, talk about their experience in creating a brand-new company in the UAV world. Founded in 2011, Near Earth Autonomy brought together a group of engineers and roboticists, looking for unconventional solutions to very hard logistics problems, presenting danger to human life. The answers were developed by pushing technology to a higher level, testing quickly and often, and keeping an open mind to alternative ways of framing engineering challenges.
Video

SAE connects, inspires, and recognizes mobility engineers

2017-05-04
Through a variety of ways, SAE brings together a multi-industry global engineering community for personal or professional advancement. We strive to foster a lifetime of learning and the advancement of the mobility industry. Find out how you can start your lifelong journey with us through membership, volunteerism, STEM advancement, events, publications, and more.
Video

SAE STEM Education Programs

2017-04-24
Through a variety of ways, SAE brings together a multi-industry global engineering community - for personal or professional advancement. We strive to foster a lifetime of learning and the advancement of the mobility industry. Find out more about membership, volunteerism, and awards and recognition opportunities.
Journal Article

Aerodynamic Analysis of Cooling Airflow for Different Front-End Designs of a Heavy-Duty Cab-Over-Engine Truck

2018-04-07
Abstract Improving the aerodynamics of heavy trucks is an important consideration in the strive for more energy-efficient vehicles. Cooling drag is one part of the total aerodynamic resistance acting on a vehicle, which arises as a consequence of air flowing through the grille area, the heat exchangers, and the irregular under-hood area. Today cooling packages of heavy trucks are dimensioned for a critical cooling case, typically when the vehicle is driving fully laden, at low speed up a steep hill. However, for long-haul trucks, mostly operating at highway speeds on mostly level roads, it may not be necessary to have all the cooling airflow from an open-grille configuration. It can therefore be desirable for fuel consumption purposes, to shut off the entire cooling airflow, or a portion of it, under certain driving conditions dictated by the cooling demands. In Europe, most trucks operating on the roads are of cab-over-engine type, as a consequence of the length legislations present.
Journal Article

Investigation on Underhood Thermal Analysis of Truck Platooning

2018-03-22
Abstract This paper presents a combined aero-thermal computational fluid dynamic (CFD) evaluation of platooning medium duty commercial vehicles in two highway configurations. Thermal analysis comparison is made between an approach that includes vehicle drag reduction on engine heat rejection and one that does not by assuming a constant heat rejection based on open road conditions. The paper concludes that accounting for aerodynamic drag reduction on engine heat load provides a more real world evaluation than assuming a constant heat load based on open road conditions. A 3D CFD underhood thermal simulations are performed in two different vehicle platooning configurations; (i) single-lane and (ii) two-lane traffic conditions. The vehicle platooning consists of two identical vehicles, i.e. leading and trailing vehicle. In this work, heat exchangers are modeled by two different heat rejection rate models.
Journal Article

Assessing Road Load Coefficients of a Semi-Trailer Combination Using a Mechanical Simulation Software with Calibration Corrections

2019-01-07
Abstract The study of road loads on trucks plays a major role in assessing the effect of heavy-vehicle design on fuel conservation measures. Coastdown testing with full-scale vehicles in the field offers a good avenue to extract drag components, provided that random instrumentation faults and biased environmental conditions do not introduce errors into the results. However, full-scale coastdown testing is expensive, and environmental biases which are ever-present are difficult to control in the results reduction. Procedures introduced to overcome the shortcomings of full-scale field testing, such as wind tunnels and computational fluid dynamics (CFD), though very reliable, mainly focus on estimating the effects of aerodynamic drag forces to the neglect of other road loads which should be considered.
Journal Article

Speed Planning and Prompting System for Commercial Vehicle Based on Real-Time Calculation of Resistance

2019-06-25
Abstract When commercial vehicles drive in a mountainous area, the complex road condition and long slopes cause frequent acceleration and braking, which will use 25% more fuel. And the brake temperature rises rapidly due to continuous braking on the long-distance downslopes, which will make the brake drum fail with the brake temperature exceeding 308°C [1]. Meanwhile, the kinetic energy is wasted during the driving progress on the slopes when the vehicle rolls up and down. Our laboratory built a model that could calculate the distance from the top of the slope, where the driver could release the accelerator pedal. Thus, on the slope, the vehicle uses less fuel when it rolls up and less brakes when down. What we do in this article is use this model in a real vehicle and measure how well it works.
Journal Article

Flow Analysis between Two Bluff Bodies in a Close Distance Platooning Configuration

2019-07-08
Abstract This article analyses the flow field between two 1/8-scale Generalized European Transport System (GETS) models which are placed in a two-vehicle platoon at close distances. Numerical simulations using the lattice Boltzmann method together with a wind tunnel experiment (open jet facility, OJF) were executed. Next, to balance measurements, coaxial volumetric velocimetry (CVV) measurements were performed to obtain information about the flow field. Three intervehicle distances, 0.10, 0.45 and 0.91 times the vehicle length, were tested for various platoon configurations where the vehicles in the platoon varied in terms of front-edge radius and the addition of tails. At the smallest intervehicle distance, the greatest reductions in drag were found for both the leading and trailing vehicles. The flow in the gap between the two vehicles follows an S-shaped path with small variations between the configurations.
Journal Article

Understanding Practical Limits to Heavy Truck Drag Reduction

2009-10-06
2009-01-2890
A heavy truck wind tunnel test program is currently underway at the Langley Full Scale Tunnel (LFST). Seven passive drag reducing device configurations have been evaluated on a heavy truck model with the objective of understanding the practical limits to drag reduction achievable on a modern tractor trailer through add-on devices. The configurations tested include side skirts of varying length, a full gap seal, and tapered rear panels. All configurations were evaluated over a nominal 15 degree yaw sweep to establish wind averaged drag coefficients over a broad speed range using SAE J1252. The tests were conducted by first quantifying the benefit of each individual treatment and finally looking at the combined benefit of an ideal fully treated vehicle. Results show a maximum achievable gain in wind averaged drag coefficient (65 mph) of about 31 percent for the modern conventional-cab tractor-trailer.
Journal Article

Systems to Silicon: A Complete System Approach to Power Semiconductor Selection for Environmentally Friendly Vehicles

2010-10-05
2010-01-1989
A complete system approach to power semiconductor analysis and selection is set forth in this paper. In order to address design overkill, a suitable power profile across the desired drive schedule is obtained through vehicle simulation in lieu of worse case operating conditions. The representative profile is then applied to detailed models of the inverter, power device, and power device thermal stack-up in order to predict worse case, silicon junction temperature rise. The simulation stream includes a closed silicon thermal loop that leads to more accurate power loss and junction temperature calculations. The models are combined and exercised in a single platform for ease of integration and fast simulation. Herein, the methods will be applied to a working example of an inverter for motor drives, and analytical results will be reviewed.
Journal Article

Reducing Vehicle Drag Force Through a Tapered Rear Side Wall

2013-10-20
2013-01-9020
Recent fluctuation in oil prices has generated interest in fuel-efficient vehicles, especially their aerodynamic profile. The literature indicates that turbulent wakes that form at the rear end of the vehicle contribute to vehicle drag in a major way. Minor studies have addressed the effects of rear-end wall angle to the drag force through effecting the wake behind the vehicle; however, this study assesses the reduction of drag using angular side walls. A previous simulation of external airflow over Ahmed's body was investigated, utilizing the k-ω SST models. Different angles of side walls were analyzed, and a maximum 36.85% reduction in drag coefficient was achieved using an angular rear side wall. The turbulent model was validated and the effectiveness of angular rear side walls thus proven. The study then simulated the flow for a road vehicle model to investigate the real world effect of angular rear side walls.
Journal Article

Modularity Adoption in Product Development: A Case Study in the Brazilian Agricultural Machinery Industry

2014-01-15
2013-01-9093
Facing a competitive and globalized market and with increasingly demanding customers, companies must constantly seek the development of practices in the development of new products. One of the current practices is the adoption of modularity. In that sense, the objective of this paper is to conduct an analysis of this practice in a Brazilian company, which manufactures agricultural machinery. The applicability of modular design in current products is focused. Therefore, a case study approach has been chosen. First, a review of the scientific literature was conducted, followed by field research, for collecting data based on interviews with product engineers and technical documentation. The case study shows the applicability of the modular design concept in a combine header, by increasing the number of repeated components. The modular header approach facilitates the implementation of engineering changes and allows greater standardization of components.
Journal Article

A Sequence Retainable Iterative Algorithm for Rainflow Cycle Counting

2014-01-15
2013-01-9091
To get a sequence retainable rainflow cycle counting algorithm for fatigue analysis, an alternate equivalent explanation to rainflow cycle counting is introduced, based on which an iterative rainflow counting algorithm is proposed. The algorithm decomposes any given load-time history with more than one crest into three sub-histories by two troughs; each sub-history with more than one crest is iteratively decomposed into three shorter sub-histories, till each sub-history obtained contains only one single or no crest. Every sub-history that contains a single crest corresponds to a local closed (full) cycle. The mean load and alternate load component of the local cycle are calculated in parallel with the iterative procedure.
Journal Article

An Experimental Methodology for Measuring of Aerodynamic Resistances of Heavy Duty Vehicles in the Framework of European CO2 Emissions Monitoring Scheme

2014-04-01
2014-01-0595
Due to the diversity of Heavy Duty Vehicles (HDV), the European CO2 and fuel consumption monitoring methodology for HDVs will be based on a combination of component testing and vehicle simulation. In this context, one of the key input parameters that need to be accurately defined for achieving a representative and accurate fuel consumption simulation is the vehicle's aerodynamic drag. A highly repeatable, accurate and sensitive measurement methodology was needed, in order to capture small differences in the aerodynamic characteristics of different vehicle bodies. A measurement methodology is proposed which is based on constant speed measurements on a test track, the use of torque measurement systems and wind speed measurement. In order to support the development and evaluation of the proposed approach, a series of experiments were conducted on 2 different trucks, a Daimler 40 ton truck with a semi-trailer and a DAF 18 ton rigid truck.
X