Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Metal Forming

This course covers metal forming and related manufacturing processes, emphasizing practical applications. From forged or P/M connecting rods to tailor-welded blank forming, metal parts are integral to the automotive industry. As a high value adding category of manufacturing, metal forming is increasingly important to the core competency of automobile manufacturers and suppliers. A thorough survey of metal forming processes and metal forming mechanics will be performed, including bulk deformation, sheet-metal, and powder metallurgy operations. Design considerations are fully integrated into the course and are presented with every process.
Training / Education

Effective Writing for Engineering and Technical Professionals

The ability to write concise and unambiguous reports, proposals, manuals, or other technical documents is a key skill for any high-functioning engineer or technical staff person in the mobility industries. Through a combination of class discussions, interactive workshop activities, assignments, checker teams (review teams) and job aids, this course delivers real-life technical writing techniques and tools that can be immediately applied. Participants discover the importance of knowing their audiences and how to communicate technical information in a 'user-friendly' style.
Journal Article

Carbon Fiber/Epoxy Mold with Embedded Carbon Fiber Resistor Heater - Case Study

2018-04-07
Abstract The paper presents a complete description of the design and manufacturing of a Carbon Fiber/epoxy mold with an embedded Carbon Fiber resistor heater, and the mold performances in terms of its surface temperature distribution and thermal deformations resulting from the heating. The mold was designed for manufacturing aileron skins from Vacuum Bag Only prepreg cured at 135°C. The glass transition temperature of the used resin-hardener system was about 175°C. To ensure homogenous temperature of the mold working surface in the course of curing, the Carbon Fiber heater was embedded in a layer of a highly heat-conductive cristobalite/epoxy composite, forming the core of the mold shell. Because the cristobalite/epoxy composite displayed much higher thermal expansion than CF/epoxy did, thermal stresses could arise due to this discrepancy in the course of heating.
Journal Article

Modularity Adoption in Product Development: A Case Study in the Brazilian Agricultural Machinery Industry

2014-01-15
2013-01-9093
Facing a competitive and globalized market and with increasingly demanding customers, companies must constantly seek the development of practices in the development of new products. One of the current practices is the adoption of modularity. In that sense, the objective of this paper is to conduct an analysis of this practice in a Brazilian company, which manufactures agricultural machinery. The applicability of modular design in current products is focused. Therefore, a case study approach has been chosen. First, a review of the scientific literature was conducted, followed by field research, for collecting data based on interviews with product engineers and technical documentation. The case study shows the applicability of the modular design concept in a combine header, by increasing the number of repeated components. The modular header approach facilitates the implementation of engineering changes and allows greater standardization of components.
Journal Article

A Sequence Retainable Iterative Algorithm for Rainflow Cycle Counting

2014-01-15
2013-01-9091
To get a sequence retainable rainflow cycle counting algorithm for fatigue analysis, an alternate equivalent explanation to rainflow cycle counting is introduced, based on which an iterative rainflow counting algorithm is proposed. The algorithm decomposes any given load-time history with more than one crest into three sub-histories by two troughs; each sub-history with more than one crest is iteratively decomposed into three shorter sub-histories, till each sub-history obtained contains only one single or no crest. Every sub-history that contains a single crest corresponds to a local closed (full) cycle. The mean load and alternate load component of the local cycle are calculated in parallel with the iterative procedure.
Journal Article

Components Durability, Reliability and Uncertainty Assessments Based on Fatigue Failure Data

2014-09-30
2014-01-2308
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings.
Journal Article

Development of a Dynamic Vibration Absorber to Reduce Frame Beaming

2014-09-30
2014-01-2315
This paper describes the development and testing of a Dynamic Vibration Absorber to reduce frame beaming vibration in a highway tractor. Frame beaming occurs when the first vertical bending mode of the frame is excited by road or wheel-end inputs. It is primarily a problem for driver comfort. Up until now, few options were available to resolve this problem. The paper will review the phenomenon, design factors affecting a vehicle's sensitivity to frame beaming, and the principles of Dynamic Vibration Absorbers (AKA Tuned Mass Dampers). Finally, the paper will describe simulation and testing that led to the development of an effective vibration absorber as a field fix.
Journal Article

Chassis Dynamometer as a Development Platform for Vehicle Hardware In-the-Loop “VHiL”

2013-05-15
2013-01-9018
This manuscript provides a review of different types and categorization of the chassis dynamometer systems. The review classifies the chassis dynamometers based on the configuration, type of rollers and the application type. Additionally the manuscript discusses several application examples of the chassis dynamometer including: performance and endurance mileage accumulation tests, fuel efficiency and exhaust emissions, noise, vibration and harshness testing (NVH). Different types of the vehicle attachment system in the dynamometer cell and its influences on the driving force characteristics and the vehicle acoustic signature is also discussed. The text also highlights the impact of the use of the chassis dynamometer as a development platform and its impact on the development process. Examples of using chassis dynamometer as a development platform using Vehicle Hardware In-the-Loop (VHiL) approach including drivability assessment and transmission calibrations are presented.
Journal Article

Innovative Design of Tractor for Small and Marginal Farms Mechanisation

2015-01-14
2015-26-0072
Agriculture Tractors are widely used as prime mover either to pull or drive the “Implements” in the farms, apart from custom made equipments like Transplanter, Manure Spreader, Combine Harvester, Cotton Picker, mobile irrigation etc. which are used for particular operations in large production capacities. For larger landholdings, timely completion of the operation within the window period is the major decisive factor that drives agriculture tractor design. For small farms like in India, the productivity requirement was offset by the versatility of the equipment. Also, the farming practice varies in India due to geographical conditions such as soil types and demographic conditions such as crops types. Hence, the mechanisation level of matured market was not yet achieved in India, though the technologies are available for implementation.
Technical Paper

Optimizing the Piston/Bore Tribology: The Role of Surface Specifications, Ring Pack, and Lubricant

2020-09-15
2020-01-2167
The present study looks into different possibilities for tribological optimization of the piston/bore system in heavy duty diesel engines. Both component rig tests and numerical simulations are used to understand the roles of surface specifications, ring pack, and lubricant in the piston/bore tribology. Run-in dynamics, friction, wear and combustion chamber sealing are considered. The performance of cylinder liners produced using a conventional plateau honing technology and a novel mechanochemical surface finishing process - ANS Triboconditioning® - is compared and the importance of in-design “pairing” of low-viscosity motor oils with the ring pack and the cylinder bore characteristics in order to achieve maximum improvement in fuel economy without sacrificing the endurance highlighted. A special emphasis is made on studying morphological changes in the cylinder bore surface during the honing, run-in and Triboconditioning® processes.
Journal Article

Lift-Off Length in an Optical Heavy-Duty Diesel Engine: Effects of Swirl and Jet-Jet Interactions

2015-09-06
2015-24-2442
The influence of jet-flow and jet-jet interactions on the lift-off length of diesel jets are investigated in an optically accessible heavy-duty diesel engine. High-speed OH chemiluminescence imaging technique is employed to capture the transient evolution of the lift-off length up to its stabilization. The engine is operated at 1200 rpm and at a constant load of 5 bar IMEP. Decreasing the inter-jet spacing shortens the liftoff length of the jet. A strong interaction is also observed between the bulk in-cylinder gas temperature and the inter-jet spacing. The in-cylinder swirl level only has a limited influence on the final lift-off length position. Increasing the inter-jet spacing is found to reduce the magnitude of the cycle-to-cycle variations of the lift-off length.
Journal Article

Reynolds Number Impact on Commercial Vehicle Aerodynamics and Performance

2015-09-29
2015-01-2859
The impact of Reynolds number on the aerodynamics and operational performance of commercial vehicles is discussed. All supporting data has been obtained from published experimental and computational studies for complete vehicles and vehicle components. A review of Reynolds number effects on boundary layer state, unsteady and steady flow, time dependent wake structure, interacting shear layer and separated flows is presented. Reynolds number modeling and simulation criteria that impact aerodynamic characteristics and performance of a commercial vehicle are shown. The concepts of dimensional analysis and flow similarity are employed to show that aerodynamics of commercial ground vehicles is only dependent on Reynolds number. The terminology of Roshko is adopted for discussing the variation in drag with Reynolds number in which the subcritical, transitional and transcritical flow regimes are defined for commercial vehicles.
Journal Article

Fuel Efficiency Improvements in Heavy Truck Wheel Systems through Advanced Bearing Design and Technology

2014-09-30
2014-01-2330
The base design of commercial vehicle wheel end systems has changed very little over the past 50 years. Current bearings for R-drive and trailer wheel end systems were designed between the 1920's and the 1960's and designs have essentially remained the same. Over the same period of time, considerable gains have been made in bearing design, manufacturing capabilities and materials science. These gains allow for the opportunity to significantly increase bearing load capacity and improve efficiency. Government emissions regulations and the need for fuel efficiency improvements in truck fleets are driving the opportunity for redesigned wheel end systems. The EPA and NHTSA standard requires up to 23% reduction in emissions and fuel consumption by 2017 relative to the 2010 baseline for heavy-duty tractor combinations.
Journal Article

Analysis of the Metering Behavior and the Energy Efficiency of a Dosing Pump

2012-09-24
2012-01-2039
Initially used in motor vehicles to convey a specific volume of fuel from a tank to the burner of an engine-independent heater, the range of applications for electro-magnetically driven dosing pumps has been widely expanded over the past few years, e.g. dosing pumps are part of the emission control system or used to convey a specific volume of fuel from a tank to the burner of an engine-independent heater. Whereas originally only conventional fuel was delivered, nowadays the dosing pumps have to be suitable for any kind of liquid media. As a result of the extensive fields of application, verification and improvement of the design for optimal usage and low energy consumption are needed. The paper presents experimental investigation and computer simulation of the dosing pump in order to examine its metering behavior and the energy consumption.
Journal Article

Tier 4 High Efficiency SCR for Agricultural Applications

2012-04-16
2012-01-1087
This paper describes the evolution in diesel engine SCR technology used on tractors ≻130 kW. Details on the SCR technology evolution from Tier 3 to Tier 4 interim are disclosed. Furthermore, this paper demonstrates how state-of-the-art SCR technology can make a non-EGR diesel engine meet Tier 4 final emission limits without using particulate filtration. Initially, it was assumed that Tier 4 aftertreatment systems would use aftertreatment for NOx and PM, combined with an advanced combustion concept and EGR. However, with this solution, one can expect disadvantages such as: cost, complexity, high heat rejection, large space claim and less than optimal fuel efficiency. Furthermore, active PM filter regeneration is challenging and can be hazardous in certain agricultural applications. A Tier 4 final engine without PM filtration would require a SCR aftertreatment system with NOx conversion efficiencies in the range of 90-97% on all relevant conditions for the entire life of the engine.
Technical Paper

The Truck Driver in IVHS System Development

1991-11-01
912707
Currently, the truck industry does not systematically address driver issues in Intelligent Vehicle-Highway System development. Because this industry is at the forefront of IVHS system and device development, it is imperative that the human factors issues are included in the research, development, design and evaluation of IVHS systems. This will minimize the risk of inadequate, unusable and unsafe devices that become a part of every truck drivers day. As IVHS technology is developed and more of these devices become available a new issue must be addressed: will the combination of these new devices overwhelm the driver and result in a reduction of safety? Could the combination of certain systems counteract each other, resulting in an unused or unusable system? History indicates these problems, and many others are definite possibilities.
Technical Paper

Data Link Overview for Heavy Duty Vehicle Applications

1990-10-01
902215
Data link interfaces have become a requirement for the heavy duty vehicle industry because of the need to share information between individual subsystems. Therefore, it is important for the industry to be familiar with the existing heavy duty vehicle serial data communications standards. SAE has addressed the need to share information between individual subsystems and this paper presents the serial data communications adopted in SAE Recommended Practices J1708, J1587 and J1922 as well as J1939 which is currently under development by the Truck and Bus Control and Communications Network Subcommittee. For a vehicle of the early to mid-1990s, the J1708, J1587 and J1922 documents provide the standards to accommodate general information sharing, detailed diagnostic definition and early powertrain controls integration. The J1939 document being developed will define a network that encompasses all the requirements satisfied by J1708, J1587 and J1922 and any new requirements that arise.
Technical Paper

Development of Three-Dimensional Laser Machining Techniques

1991-04-01
910955
Laser machining is an effective material removal process for types of materials which are difficult to machine mechanically, such as hardened alloys, ceramics, and composites. Since laser machining is a thermal process, its effectiveness depends on the thermal rather than the mechanical properties of a material. This paper discusses a concept for performing three-dimensional (3-D) laser machining using two laser beams. This concept aims at improving the material removal rate and energy efficiency of laser machining. Furthermore, the kinematic aspects of 3-D laser machining are discussed. Results for 3-D laser machining of metals, ceramics and composites are presented and compared with conventional machining methods.
Technical Paper

Steel Standardization: Caterpillar's Conscious Evolution

1991-04-01
910953
Evolution in the standardization of steel sizes and chemistries has been taking place at Caterpillar over the last eight years. This has occurred through conscious optimization of several internal and external factors. The history, techniques and further potential of the project will be presented.
Technical Paper

Shaft Seals-Trends and Developments for Off Highway Heavy Equipment Applications

1991-04-01
910966
The paper will review existing seals used in off-highway heavy equipment, both radial lip seal applications and face type seal applications in general use on track vehicles. With the trend towards improved reliability and durability, together with the never ending quest for quality and product improvements, the paper will discuss a number of seal development programs which will result in products that meet the new and projected future requirements for seals from the off-highway heavy equipment manufacturers.
X