Refine Your Search

Topic

Search Results

Training / Education

Fundamentals of GD&T ASME Y14.5M 1994 - Foundational Level

The 2-day foundational-level Fundamentals of GD&T course teaches the terms, rules, symbols, and concepts of geometric dimensioning and tolerancing as prescribed in the ASME Y14.5M-1994 Standard. The class offers an explanation of geometric symbols, including each symbol’s requirements, tolerance zones, and limitations. It compares GD&T to coordinate tolerancing, Rules #1 and #2; form and orientation controls; tolerance of position; runout and profile controls. Newly acquired learning is reinforced throughout the class with more than 100 practice problems using industrial drawings.
Training / Education

Fundamentals of GD&T for Inspectors - Foundational Level

This 2-day foundational-level course builds on geometric dimensioning and tolerancing fundamentals and teaches an introduction of how to inspect GD&T requirements.  The course offers an explanation of the geometric symbols, rules, and concepts, the datum system, and how to inspect GD&T requirements using tools from the four categories of inspection tools (CMM; comparison instruments and fixed gages; hand tools and open set up; and production gaging systems).
Training / Education

Fundamentals of GD&T ASME Y14.5 - 2009 Advanced Level

This 3-day Fundamentals of GD&T course provides an in-depth study of the terms, rules, symbols, and concepts of geometric dimensioning and tolerancing, as prescribed in the ASME Y14.5-2009 Standard. The course can be conducted in three 8-hour sessions or with flexible scheduling including five mornings or five afternoons. 
Training / Education

Applications of GD&T ASME 14.5 - 1994 & 2009 Foundational Level

This course teaches the thought processes involved in assigning GD&T to components, and it changes the way many engineers think about part tolerancing. The course focuses on what constitutes good and poor drawing practices, common dimensioning methods used in industry, using GD&T to communicate system functions on component dimensions, and the logic of how to apply GD&T to components. You’ll also learn how to select datum features and how to fully define component surfaces using GD&T. Establishing tolerance values is not covered.   
Training / Education

Fundamentals of GD&T ASME Y14.5M 1994 - Advanced Level

This 3-day advanced-level Fundamentals of GD&T course is an in-depth study of the terms, rules, symbols, and concepts of geometric dimensioning and tolerancing as prescribed in the ASME Y14.5M-1994 Standard. The course can be conducted in three 8-hour sessions or with flexible scheduling including five mornings or five afternoons.  This class includes all the content from the Fundamentals of GD&T 2-day foundational course: an explanation of geometric symbols, including each symbol’s requirements, tolerance zones, and limitations.
Training / Education

GD&T Review and Application

Led by our senior GD&T professionals with a wide variety of industry background and experience, this one-day GD&T Review and Application course is designed for organizations who have participated in training through SAE but are looking for further clarification on how to apply GD&T best practices to specific organizational drawings. Designed to assist your design teams with highly complex design analysis problems and to support your teams through real world drawing examples, the instructor will review, answer questions, and provide feedback on tolerance analysis and GD&T implementation.
Training / Education

Advanced Concepts of GD&T ASME Y14.5 2009 - Foundational Level

This two-day foundational-level course teaches Advanced Concepts of GD&T as prescribed in the ASME Y14.5-2009 Standard. It offers an explanation of complex GD&T topics, such as the expanded use of composite position and profile tolerances, customized datum reference frames, the translation modifier, and applying GD&T to non-rigid parts. You’ll learn about functional dimensioning, form controls, the datum system, additional and complex datum feature types, expanded datum target concepts and usage on restrained parts, simultaneous, and separate requirements.
Training / Education

Critical Concepts of Tolerance Stacks ASME Y14.5 1994, 2009, 2018 - Advanced Level

Using tolerance stacks ensures that parts fit together properly, reducing scrap and rework, thereby increasing value. This 3-day advanced-level course includes everything covered in the 2-day foundational-level course. It explains how to use tolerance stacks to analyze product designs and how to use geometric tolerances in stacks.
Training / Education

Introduction to Airframe Engineering Design for Manufacturing, Assembly and Automation

This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. Why is a design for manufacturing, assembly and automation so important? This introductory course on airframe engineering will cover the importance of design for manufacturing, assembly and automation in aerospace. It will review what the key drivers are for a “good” design and some of the key points for manufacturing and assembly of aircraft components. It will look at how an engineer can combine traditional technologies with new, cutting-edge technologies, to determine the best scenario for success.
Training / Education

Fundamentals of GD&T ASME Y14.5 - 2018 Foundational Level

The 2-day foundational-level Fundamentals of GD&T course teaches the terms, rules, symbols, and concepts of geometric dimensioning and tolerancing, as prescribed in the ASME Y14.5-2018 Standard. The class offers an explanation of geometric tolerances, including their symbols, tolerance zones, applicable modifiers, common applications, and limitations. It explains Rules #1 and #2, the datum system, form and orientation controls, tolerance of position (RFS and MMC), runout, and profile controls. Newly acquired learning is reinforced throughout the class with more than 130 practice exercises, including more than 60 application problems. 
Training / Education

Fundamentals of GD&T ASME Y14.5 - 2009 Foundational Level

The 2-day foundational-level Fundamentals of GD&T course teaches the terms, rules, symbols, and concepts of geometric dimensioning and tolerancing, as prescribed in the ASME Y14.5-2009 Standard. The class offers an explanation of geometric tolerances, their symbols, tolerance zones, applicable modifiers, common applications, and limitations. It explains Rules #1 and #2, form and orientation controls, the datum system, tolerance of position (RFS and MMC), runout, and profile controls. Newly acquired learning is reinforced throughout the class with more than 80 practice exercises. 
Training / Education

Optimizing Systems Design Engineering

This full-day course is designed to equip engineering professionals with the knowledge and tools needed to combine the strengths of Design Engineering and Systems Engineering into Systems Design Engineering (SDE) principles. These principles will improve engineering efficiency and practically design more sustainable system-level products, all while strategically aligning with digital transformation objectives.
Training / Education

Fundamentals of GD&T ASME Y14.5 2018 - Advanced Level

This 3-day Fundamentals of GD&T course provides an in-depth study of the terms, rules, symbols, and concepts of geometric dimensioning and tolerancing, as prescribed in the ASME Y14.5-2018 Standard. The course can be conducted in three 8-hour sessions or with flexible scheduling including five mornings or five afternoons. 
Technical Paper

Comparison and Evaluation of Performance, Combustion and Particle Emissions of Diesel and Gasoline in a Military Heavy Duty 720 kW CIDI Engine Applying EGR

2020-09-15
2020-01-2057
Investigating the impact of Gasoline fuel on diesel engine performance and emission is very important for military heavy- duty combat vehicles. Gasoline has great potential as alternative fuel due to rapid depletion of petroleum reserves and stringent emission legislations, under multi fuel strategy program for military heavy- duty combat vehicle. There is a known torque, horsepower and fuel economy penalty associated with the operation of a diesel engine with Gasoline fuel. On the other hand, experimental studies have suggested that Gasoline fuel has the potential for lowering exhaust emissions, especially NOx, CO, CO2, HC and particulate matter as compared to diesel fuel. Recent emission legislations also restrict the total number of nano particles emitted in addition to particulate matter, which has adverse health impact.
Standard

Air Cycle Air Conditioning Systems for Air Vehicles

2019-08-20
AS4073B
This SAE Aerospace Standard (AS) defines the requirements for air cycle air conditioning systems used on military air vehicles for cooling, heating, ventilation, and moisture and contamination control. General recommendations for an air conditioning system, which may include an air cycle system as a cooling source, are included in MIL-E-18927E and JSSG-2009. Air cycle air conditioning systems include those components which condition high temperature and high pressure air for delivery to occupied and equipment compartments and to electrical and electronic equipment. This document is applicable to open and closed loop air cycle systems. Definitions are contained in Section 5 of this document.
Journal Article

Threat Identification and Defense Control Selection for Embedded Systems

2020-08-18
Abstract Threat identification and security analysis have become mandatory steps in the engineering design process of high-assurance systems, where successful cyberattacks can lead to hazardous property damage or loss of lives. This article describes a novel approach to perform security analysis on embedded systems modeled at the architectural level. The tool, called Security Threat Evaluation and Mitigation (STEM), associates threats from the Common Attack Pattern Enumeration and Classification (CAPEC) library with components and connections and suggests potential defense patterns from the National Institute of Standards and Technology (NIST) Special Publication (SP) 800-53 security standard. This article also provides an illustrative example based on a drone package delivery system modeled in AADL.
Technical Paper

Decomposition and Coordination to Support Tradespace Analysis for Ground Vehicle Systems

2022-03-29
2022-01-0370
Tradespace analysis is used to define the characteristics of the solution space for a vehicle design problem enabling decision-makers (DMs) to evaluate the risk-benefit posture of a vehicle design program. The tradespace itself is defined by a set of functional objectives defined by vehicle simulations and evaluating the performance of individual design solutions that are modeled by a set of input variables. Of special interest are efficient design solutions because their perfomance is Pareto meaning that none of their functional objective values can be improved without decaying the value of another objective. The functional objectives are derived from a combination of simulations to determine vehicle performance metrics and direct calculations using vehicle characteristics. The vehicle characteristics represent vendor specifications of vehicle subsystems representing various technologies.
X