Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Performance of Dyna-Bite Traction System

1993-09-01
932390
The Dyna-Bite®* traction system, developed by the Omitrac corporation, consists of a series of retractable spades which can be placed over a conventional tractor drive tires to improve traction under varying soil conditions. An initial model of the traction system was tested in 1986 (1)**. The performance of this model was compared with a 2WD tractor equipped with single drive tires and a front wheel assist (FWA) tractor. More recently, an improved model DB3-RM was evaluated at the University of Saskatchewan. The results were compared with an equally ballasted IH 1086 2WD tractor equipped with single and dual drive wheels (2). Tests for both studies were conducted on a wide range of soil moisture conditions under a variety of drawbar pull levels. Both models of the traction system provided significant traction improvements. Initial model of the traction system performed nearly as good as FWA while the later model proved superior to both single and dual wheels.
Technical Paper

Electro-Hydraulic Integrated Circuits (EHIC) an Introduction

1993-09-01
932400
This paper introduces two new types of basic components (an Electro-Hydraulic Tube and a Hydraulic Tube) which when connected in an appropriate manner can control flow and pressure for many applications; in addition, one of the devices is readily interfacable to a microprocessor for external control. Some background information about the basic concept and the operation of the two components is introduced. Some of the experimental characteristics will be illustrated and several basic circuit examples will be presented to show how the concept can be implemented. The Electro-Hydraulic Integrated Block (EHIB) and Circuit (EHIC) will be introduced followed by a discussion of the advantages and potential of the EHIC concept.
Technical Paper

Seedling Emergence Simulation Using Mechanical Probes

1992-09-01
921618
Understanding the Relationships between plants and soil is important in the development of methods of crop production. Although physical properties of soil conducive to plant growth can be recognized by experienced observers, many of these properties have not been defined satisfactorily in mathematical or physical terms. A method of measuring penetration resistance and energy exerted by a mechanical seedling (a steel probe simulating a seedling) as it moved upward through the soil surface under different levels of surface compaction and soil moisture was examined. Mechanical seedlings with 2.06, 3.19 and 4.65 mm tip diameters were tested at soil moisture levels of 13, 17, and 20%. The penetration rate of the mechanical seedling while moving through the soil was held constant at 10 mm/min. Results showed that the emergence energy increased directly with soil surface compaction pressure, initial soil moisture content, and mechanical seedling diameters.
Technical Paper

A Fuel Economy Evaluation of a Safety Compliant Single Passenger Vehicle

1992-09-01
921664
The Nexus vehicle was designed and built for Transport Canada at the University of Saskatchewan to demonstrate that a safety compliant single passenger commuter vehicle could attain extremely low fuel consumption rates at modest highway speeds. Experimentally determined steady state fuel consumption rates of the Nexus prototype ranged from 1.6 L/100 km at 61 km/hr up to 2.8 L/100 km at 121 km/hr. Fuel consumption rates for the Society of Automotive Engineers (SAE) driving cycle tests were 4.5 L/100 km for the SAE Urban cycle and 2.0 L/100 km for the SAE Interstate 55 cycle. The efficiency of the power train was determined using a laboratory dynamometer, enabling the road test results to be compared to the results from an energy and performance simulation program. Predicted fuel economy was in good agreement with that determined experimentally. Widespread use of single passenger commuter vehicles would substantially reduce current transportation energy consumption.
Technical Paper

An Integrated Flow Divider/Combiner Valve Design, Part 1

1992-09-01
921741
A flow divider valve is a device which allows a single stream of fluid to be split into two paths according to a predetermined ratio and independent of variations or differences in the load pressures. A flow combiner valve combines two paths of fluid into one stream such that the ratio of the flow rates coming into the valve remains independent of any variation or difference between the inlet pressures. This paper describes the design, operation and performance of an integrated flow divider/combiner valve. This design maintains the small flow dividing/combining error of high precision valves (less than 1.5% at rated flow) but incorporates the shuttle valve into the main spool system. This new design reduces the weight of the valve by 20% reducing the cost by approximately 10%. The new structure simplifies the construction of high precision valves and reduces a source of flow dividing/combining error (leakage).
X