Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Research on the Performance of Magnetorheological Fluid Auxiliary Braking Devices Thermal Management System Based on Flat Plate Heat Pipes

2020-04-14
2020-01-0894
To prevent braking recession, heavy commercial vehicles are often equipped with fluid auxiliary braking devices, such as hydraulic retarder. Hydraulic retarder can convert the vehicle’s kinetic energy to the fluid heat energy, which can enormously alleviate the main brake’s workload. The traditional hydraulic retarder can provide enough braking torque but has a delay during the braking. In this paper, a new type of magnetorheological fluid (MR fluid) hydraulic retarder is introduced by replacing the traditional fluid with magnetorheological fluid because of its linear braking torque and quick response. By changing the magnetic field intensity, it is easier to control the braking torque than the traditional hydraulic retarder. The rise of magnetorheological fluid temperature during the braking period will reduce the hydraulic retarder’s performance.
Technical Paper

Safe Travelling Speed of Commercial Vehicles on Curves Based on Vehicle-Road Collaboration

2017-03-28
2017-01-0080
Mountain road winding and bumpy, traffic accidents caused by speeding frequently happened, mainly concentrated on curves. The present curve warning system research are based on Charge-coupled Device, but the existing obstacles, weather , driving at night and road conditions directly affect the accuracy and applicability. The research is of predictability to identify the curves based on the geographic information and can told the driver road information and safety speed ahead of the road according to the commercial vehicle characteristic of load, and the characteristics of the mass center to reduce the incidence of accidents. In this paper, the main research contents include: to estimate forward bend curvature through the node classification method based on the digital map.
Technical Paper

Study on Commercial Vehicle ECR Thermal Management System

2016-09-18
2016-01-1935
With the continuous increasing requirements of commercial vehicle weight and speed on highway transportation, conventional friction brake is difficult to meet the braking performance. To ensure the driving safety of the vehicle in the hilly region, the eddy current retarder (ECR) has been widely used due to its fast response, lower prices and convenient installation. ECR brakes the vehicle through the electromagnetic force generated by the current, and converted vehicle mechanical energy into heat through magnetic field. Air cooling structure is often used in the traditional ECR and cooling performance is limited, which causes low braking torque, thermal recession, and low reliability and so on. The water jacket has been equipped outside the eddy current region in this study, and the electric ECR is cooled through the water circulating in the circuit, which prolongs its working time.
Technical Paper

The Research on the Temperature Control Stability of Hydraulic Retarder Oil Based on Organic Rankine Cycle

2016-09-27
2016-01-8085
The hydraulic retarder is an auxiliary braking device generally equipped on commercial vehicles. Its oil temperature change influences the brake performance of hydraulic retarder. The Organic Rankine Cycle (ORC) is a good means to recover exhausted heat. Moreover, it can cool oil and stably control oil temperature with the help of heat absorption related with evaporation. Comprehensively considering the heat-producing characteristics of hydraulic retarder and the temperature control demand, the aimed boundary conditions are determined. Also the changing rules about the working medium flow rate are obtained. In this work, the heat-producing properties of hydraulic retarder under different conditions and the oil external circulating performance is firstly analyzed. By researching the system’s adaptation to the limiting conditions, the aimed temperature to control is prescribed.
Technical Paper

The Research of the Heavy Truck’s Warming System

2017-10-08
2017-01-2221
It’s not easy to start the engine in winter, especially in frigid highlands, because the low temperature increases the fuel’s viscosity, decreasing the lubricating oil flow ability and the storage performance of battery. Current electrical heating method can improve the engine starting performance in low temperature condition, but this method adds an external power to the engine, leading to the engine cannot maintain an efficient energy utilization. A warming device using the solar energy is designed to conserve the energy during the daytime, and directly warm up the engine at the time when the engine turns off for a long time, especially during the night. A solar collector installed on the top of the vehicle is used to convert the solar energy to the thermal energy, which is then transferred to the heat accumulator that contain the phase-change medium which can increase the heat storage performance.
Technical Paper

Simulation Study on Vehicle Road Performance with Hydraulic Electromagnetic Energy-Regenerative Shock Absorber

2016-04-05
2016-01-1550
This paper presents a novel application of hydraulic electromagnetic energy-regenerative shock absorber (HESA) into commercial vehicle suspension system and vehicle road performance are simulated by the evaluating indexes (e.g. root-mean-square values of vertical acceleration of sprung mass, dynamic tire-ground contact force, suspension deflection and harvested power; maximum values of pitch angle and roll angle). Firstly, the configuration and working principle of HESA are introduced. Then, the damping characteristics of HESA and the seven-degrees-of-freedom vehicle dynamics were modeled respectively before deriving the dynamic characteristics of a vehicle equipped with HESA. The control current is fixed at 7A to match the similar damping effect of traditional damper on the basis of energy conversion method of nonlinear shock absorber.
Technical Paper

A Multi-Axle and Multi-Type Truck Load Identification System for Dynamic Load Identification

2022-03-29
2022-01-0137
Overloading of trucks can easily cause damage to roads, bridges and other transportation facilities, and accelerate the fatigue loss of the vehicles themselves, and accidents are prone to occur under overload conditions. In recent years, various countries have formulated a series of management methods and governance measures for truck overloading. However, the detection method for overload behavior is not efficient and accurate enough. At present, the method of dynamic load identification is not perfect. No matter whether it is the dynamic weight measurement method of reconstructing the road surface or the non-contact dynamic weight measurement method, little attention is paid to the difference of different vehicles. Especially for different vehicles, there should be different load limits, and the current devices are not smart enough.
Technical Paper

An Integrated Flow Divider/Combiner Valve Design, Part 2

1993-09-01
932401
The development of high precision flow divider/combiner valves has received considerable attention by the authors over the past decade. Several different valve designs for division and combination of flow have been designed which display small flow dividing/combining error (1-2%) when compared to conventional designs (2-10%). Recent studies have improved upon the design in order to reduce cost, weight and complexity of the valve. This paper will present the latest of the authors research into the development of a high precision, autoregulated flow divider/combiner valve with an integral shuttle valve. The autoregulator extends the operating range of the integrated flow divider/combiner valve (for errors less than 2 %) to 10-50 lpm compared to 30-50 lpm for the unregulated valve.
Technical Paper

Application of Wavelet Analysis in Truck Cab Vibration Signal Processing

2012-09-24
2012-01-2011
The basic principle of wavelet transform is presented and the method of wavelet theory is used in vibration signal analysis of vehicle in this paper. The vibration signals which generated in the locations such as cab floor, engine, transmission, band spring and frame under the usual work condition are measured by the vibration test system. The vibration signals are decomposed with the principle of wavelet decomposition at level six, and eigenvectors of signal energy are gained. According to the correlation coefficient of eigenvectors of signal energy distribution, two signals correlativity is determined. It could be an effective method that identificate the main vibration source.
Technical Paper

The Driving Planning of Pure Electric Commercial Vehicles on Curved Slope Road in Mountainous Area Based on Vehicle-Road Collaboration

2021-04-06
2021-01-0174
The mountain roads are curved and complicated, with undulating terrain and large distance between charging stations. Compared with traditional powered vehicles, in addition to safety issues, pure electric vehicles also need to deal with the driving range issue. At present, the relevant researches on automobile driving in mountainous areas mainly focus on the driving safety of traditional fuel oil vehicles when going uphill and downhill, while there are few researches on the driving planning of pure electric commercial vehicles on curved slope road. This paper presents a speed planning method for pure electric commercial vehicles based on vehicle-road collaboration technology. First, establish the vehicle dynamics model, analyze the vehicle dynamics characteristics when passing the downhill curve, calculate the safe speed range of the vehicle when passing the downhill curve, and establish the safe speed model of the downhill curve.
Technical Paper

Research on Dust Suppression of Dump Truck

2022-03-29
2022-01-0786
When dump trucks unload dusty materials, dust particles with a diameter of 1 to 75 microns slide out of the dump body and float into the air. Dust particles naturally settle down spending a few hours, which causes air pollution. People who work in this environment daily suffer serious physical harm. To study the movement of dust particles during the unloading process, a scaled-down model is used to simulate the process of dump truck unloading gravel, and a high frame rate camera is used to record the movement trajectory of dust particles during the unloading process. In this paper, by observing the movement process of unloading dust particles by dump trucks, based on the principle of dynamics, a mathematical model describing the unloading of dust particles in the dump body and a mathematical model of the diffusion of dust particles in the air are established. Take the small gravel sampled at the construction site as an example of the experiment.
Technical Paper

Research on Overload Dynamic Identification Based on Vehicle Vertical Characteristics

2023-04-11
2023-01-0773
With the development of highway transportation and automobile industry technology, highway truck overload phenomenon occurs frequently, which poses a danger to road safety and personnel life safety. So it is very important to identify the overload phenomenon. Traditionally, static detection is adopted for overload identification, which has low efficiency. Aiming at this phenomenon, a dynamic overload identification method is proposed. Firstly, the coupled road excitation model of vehicle speed and speed bump is established, and then the 4-DOF vehicle model of half car is established. At the same time, considering that the double input vibration of the front and rear wheels will be coupled when vehicle passes through the speed bump, the model is decoupled. Then, the vertical trajectory of the body in the front axle position is obtained by Carsim software simulation.
Technical Paper

A Non-Contact Overload Identification Method Based on Vehicle Dynamics

2019-04-02
2019-01-0490
The vehicle overload seriously jeopardizes traffic safety and affects traffic efficiency. At present, the static weighing station and weigh-in-motion station are both relatively fixed, so the detection efficiency is not high and the traffic efficiency is affected; the on-board dynamic weighing equipment is difficult to be popularized because of the problem of being deliberately damaged or not accepted by the purchaser. This paper proposes an efficient, accurate, non-contact vehicle overload identification method which can keep the road unimpeded. The method can detect the vehicle overload by the relative distance (as the characteristic distance) between the dynamic vehicle's marking line and the road surface. First, the dynamics model of the vehicle suspension is set up. Then, the dynamic characteristic distance of the traffic vehicle is detected from the image acquired by the calibrated camera based on computer vision and image recognition technology.
Technical Paper

Simultaneous Optimization of Power Train Parameter and Control Strategy in a Plug-In Hybrid Electric Bus

2015-09-29
2015-01-2828
In the Plug-in hybrid electric bus, the power train parameter and control strategy significantly affect the economy and dynamic performance. Thus, the simultaneous optimization of power train parameter and control strategy is designed for the trade-off between the dynamic and economic performance. Depending on the parallel electric auxiliary control strategy in a plug-in hybrid electric bus, a vehicle dynamic simulation model is built with the software AVL Cruise. Aiming at the minimization of equivalent gas consumption and acceleration time from 0 to 50kmph, the gear ratio, final drive ratio, gear shifting strategy and control strategy are chosen as optimal variable, which significantly impact power performance and fuel economy. The driving performance and the driving range with full battery are considered as constraints. Based on the software Isight, multi-objective optimization model is built by adopting non-dominated sorting genetic optimization algorithm (NSGA-II).
Technical Paper

Research on Torsional Characteristic of Separate Frame Construction for a Light Off-Road Vehicle

2015-03-10
2015-01-0014
A key problem of designing a light off-road vehicle with separate frame construction is to improve its torsional characteristic, which has a significant influence on the performance of the vehicle. Inevitably, a certain distortion of the body would be produced by the vibration and impact passing from the road. In present research, an analysis model of light off-road vehicle is established based on the theories and methods of finite element (FEM). The static stiffness of the body is simulated and the deformation of openings on the body, mainly the windows and the doors of the vehicle is studied. On the working conditions of torsion and braking combination, torsion and cornering combination, diagonal dangling, ultimate torsion of unilateral wheels and diagonal wheels, the static strength of separate frame construction is studied as well. The stress concentration regions are obtained according to the results of simulation.
Technical Paper

Research on Liquid Sloshing Model and Braking Dynamics Model of Semi-Trailer Vehicle for Transporting Dangerous Cargo for Driving Automation

2023-12-20
2023-01-7059
The phenomenon of liquid transfer in the liquid tank of the semi-trailer vehicle for transporting dangerous cargo (SVTDC) during braking is analyzed and the relevant mathematical model is established. The braking dynamic model of the SVTDC considering the liquid sloshing in the tank is established, and the model is verified based on the co-simulation method. Based on the typical conditions, the braking deceleration and axle load calculation functions of the model are simulated and analyzed, and the application prospect of the model in the development of driving automation control strategy is discussed.
Technical Paper

Fuzzy Control of Regenerative Braking on Pure Electric Garbage Truck Based on Particle Swarm Optimization

2024-04-09
2024-01-2145
To improve the braking energy recovery rate of pure electric garbage removal vehicles and ensure the braking effect of garbage removal vehicles, a strategy using particle swarm algorithm to optimize the regenerative braking fuzzy control of garbage removal vehicles is proposed. A multi-section front and rear wheel braking force distribution curve is designed considering the braking effect and braking energy recovery. A hierarchical regenerative braking fuzzy control strategy is established based on the braking force and braking intensity required by the vehicle. The first layer is based on the braking force required by the vehicle, based on the front and rear axle braking force distribution plan, and uses fuzzy controllers.
X