Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Fuel Consumption Track Tests for Tractor-Trailer Fuel Saving Technologies

2009-10-06
2009-01-2891
The objective of the project was to conduct controlled test-track studies of solutions for achieving higher fuel efficiency and lower greenhouse gas emissions in the trucking industry. Using vehicles from five Canadian fleets, technologies from 12 suppliers were chosen for testing, including aerodynamic devices and low rolling resistance tires. The participating fleets also decided to conduct tests for evaluating the impact on fuel consumption of vehicle speed, close-following between vehicles, and lifting trailer axles on unloaded B-trains. Other tests targeted comparisons between trans-container road-trains and van semi-trailers road-trains, between curtain-sided semi-trailers, trans-containers and van semi-trailers, and between tractors pulling logging semi-trailers loaded with tree-length wood and short wood. The impact of a heavy-duty bumper on fuel consumption and the influence of B5 biodiesel blend on fuel consumption were also assessed.
Journal Article

Comparison of Fuel Efficiency and Traction Performances of 6 × 4 and 6 × 2 Class 8 Tractors

2014-09-30
2014-01-2358
The objective of this project was to compare the fuel consumption and traction performances of 6 × 2 and 6 × 4 Class 8 tractors. Two approaches have been considered: evaluation of 6 × 2 tractors, modified from 6 × 4 tractors, and evaluation of OEM 6 × 2 tractors. Compared to the 6 × 4 tractors, which are equipped with a rear tandem with both drive axles, the 6 × 2 tractors have a rear tandem axle with one drive axle, and one non-drive axle, also called dead axle. The 6 × 2 tractor configurations are available from the majority of Class 8 tractor manufacturers. The SAE Fuel Consumption Test Procedures Type II (J1321) and Type III (J1526) were used for fuel consumption track test evaluations. Traction performances were assessed using pull sled tests to compare pulling distance, maximum speed, and acceleration when pulling the same set sled on similar surface.
Technical Paper

Track-test Evaluation of Aerodynamic Drag Reducing Measures for Class 8 Tractor-Trailers

2008-10-07
2008-01-2600
Air resistance, after gross vehicle weight, is the largest factor responsible for vehicle energy loss and has an important influence on fuel consumption. The magnitude of aerodynamic drag is affected by the vehicle's shape, frontal area, and travel speed. This study aimed to evaluate several aerodynamic drag reduction measures applicable to class 8 tractor-trailer combinations. The tested aerodynamic devices included trailer aft body rear deflectors (boat tails), trailer skirts, gap deflectors, fuel tank fairings and truck rear-axle fenders. It also assessed the aerodynamic influence of opened doors on an empty wood chip van trailer on the fuel consumption of the tractor-trailer combination. The tests were conducted according to SAE J1321 Joint TMC/SAE Fuel Consumption Test Procedure - Type II.
Technical Paper

Development of a Fuel Consumption Test Procedure for Representative Urban Duty Cycles

2011-09-13
2011-01-2291
This project's objective was the development of an on-road vehicle fuel consumption test procedure for representative stop-and-go urban duty cycles. The scope of the project included a review of existing stop-and-go urban duty cycles, the development of a track testing methodology for measuring the fuel consumption on stop-and-go urban duty cycles, and testing with a view to the validation of the methodology. Literature review analyzed several transport activities to determine specific stop-and-go urban duty cycles, such as pick-up and delivery operations, refuse collection, bus transport, and utility and service operation. It was found that driving cycles should be easy enough to recreate and replicate on the test track and should be representative of application driving patterns. The cycles should be adapted for fuel economy testing, and geometric cycles are easier to follow than the cycles based on actual drive traces.
X