Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Efficiency and Emissions-Optimized Operating Strategy of a High-pressure Direct Injection Hydrogen Engine for Heavy-duty Trucks

2009-11-02
2009-01-2683
Hydrogen engines are required to provide high thermal efficiency and low nitrogen oxide (NOx) emissions. There are many possible combinations of injection pressure, injection timing, ignition timing, lambda and EGR rate that can be used in a direct-injection system for achieving such performance. In this study, several different combinations of injection and ignition timings were classified as possible combustion regimes, and experiments were conducted to make clear the differences in combustion conditions attributable to these timings. Lambda and the EGR rate were also evaluated for achieving the desired performance, and indicated thermal efficiency of over 45% was obtained at IMEP of 0.95 MPa. It was found that a hydrogen engine with a high-pressure direct-injection system has a high potential for improving thermal efficiency and reducing NOx emissions.
Technical Paper

Stratification of Swirl Intensity in the Axial Direction for Control of Turbulence Generation During the Compression Stroke

1991-02-01
910261
Control of turbulence during the compression stroke is suggested by both theoretical calculations and experimental results obtained with an LDV measurement in a motored engine. The authors have found experimentally that when an axial distribution of swirl intensity exists, a large-scale annular vortex is formed inside the cylinder during the compression stroke and this vortex generates and transports turbulence energy. A numerical calculation is adopted to elucidate this phenomenon. Then, an axial stratification of swirl intensity is found to generate a large-scale annular vortex during the compression stroke by an interaction between the piston motion and the axial pressure gradient. The initial swirl profile is parametrically varied to assess its effect on the turbulence parameters. Among calculated results, turbulence energy is enhanced strongest when the swirl intensity is highest at the piston top surface and lowest at the bottom surface of the cylinder head.
Technical Paper

High Temperature Diesel Combustion in a Rapid Compression-Expansion Machine

1991-09-01
911845
According to previous papers on the combustion process in LHR diesel engines the combustion seems to deteriorate in LHR diesel engines. However it has been unclear whether this was caused by the high temperature gas or high temperature combustion chamber walls. This study was intended to investigate the effect of gas temperature on the rate of heat release through the heat release analysis and other measurements using a rapid compression-expansion machine. Experiments conducted at high gas temperatures which was achieved by the employment of oxygen-argon-helium mixture made it clear that the combustion at a high gas temperature condition deteriorated actually and this was probably due to the poorer mixing rate because of the increase in gas viscosity at a high gas temperature condition.
Journal Article

Study of DME Diesel Engine for Low NOx and CO2 Emission and Development of DME Trucks for Commercial Use

2011-08-30
2011-01-1961
Study of DME diesel engines was conducted to improve fuel consumption and emissions of its. Additionally, DME trucks were built for the promotion and the road tests of these trucks were executed on EFV21 project. In this paper, results of diesel engine tests and DME truck driving tests are presented. As for DME diesel engines, the performance of a DME turbocharged diesel engine with LPL-EGR was evaluated and the influence of the compression ratio was also explored. As for DME trucks, a 100,000km road test was conducted on a DME light duty truck. After the road test, the engine was disassembled for investigation. Furthermore, two DME medium duty trucks have been developed and are now the undergoing practical road testing in each area of two transportation companies in Japan.
Technical Paper

Comprehensive Characterization of Particulate Emissions from Advanced Diesel Combustion

2007-07-23
2007-01-1945
The applicability of several popular diesel particulate matter (PM) measurement techniques to low temperature combustion is examined. The instruments' performance in measuring low levels of PM from advanced diesel combustion is evaluated. Preliminary emissions optimization of a high-speed light-duty diesel engine was performed for two conventional and two advanced low temperature combustion engine cases. A low PM (<0.2 g/kg_fuel) and NOx (<0.07 g/kg_fuel) advanced low temperature combustion (LTC) condition with high levels of exhaust gas recirculation (EGR) and early injection timing was chosen as a baseline. The three other cases were selected by varying engine load, injection timing, injection pressure, and EGR mass fraction. All engine conditions were run with ultra-low sulfur diesel fuel. An extensive characterization of PM from these engine operating conditions is presented.
Technical Paper

A Numerical Simulation of Ignition Delay in Diesel Engines

1998-02-23
980501
To investigate the ignition process in a diesel spray, the ignition in a transient fuel spray is analyzed numerically by a simple quasi-steady spray model coupled with the Shell kinetics model at various operating conditions and validity of this model is assessed by a comparison with existing experimental data. The calculated results indicate that the competition between the heat absorption of fuel and the hot air entrainment determines the equivalence ratio of mixtures favorable for the ignition to occur in the shortest time.
Technical Paper

Effective Usage of LNT in High Boosted and High EGR Rate of Heavy Duty Diesel Engine

2010-04-12
2010-01-1066
Lean NOx trap (LNT) and Urea-SCR system are effective aftertreatment systems as NOx reduction device in diesel engines. On the other hand, DPF has already been developed as PM reduction device and it has been used in various vehicles. LNT can absorb and reduce NOx emission in wide range exhaust temperatures, from 150°C to 400°C, and the size of LNT component can be compact in comparison with Urea-SCR system because LNT uses the diesel fuel as a reducing agent and it is needless to install the reducing agent tank in the vehicle. In this study, authors have shown that the NOx conversion rate of LNT is high in the case of extremely low NOx concentration from the engine. Also, the effects of LNT and DPF were examined using the Super Clean Diesel (SCD) Engine, which has low NOx level before aftertreatment and has been finished as Japanese national project.
Technical Paper

Study of NOx Emissions Reduction Strategy for a Naturally Aspirated 4-Cylinder Direct Injection Hydrogen ICE

2010-10-25
2010-01-2163
Hydrogen engines are required to provide high thermal efficiency and low nitrogen oxide (NOX) emissions. There are many possible combinations of injection timing, ignition timing, lambda and EGR rate that can be used in a direct-injection system for achieving such performance. In this study, NOX emissions of natural aspirated 4 cylinders engine with management strategies involving the injection timing, ignition timing, lambda and the EGR rate were evaluated under a Japanese JE05 emissions test cycle. Finally, the paper projects the potential of direct injection hydrogen engine for obtaining high output power and attaining low NOX emissions of 0.7 g/kWh under the emission test cycle.
Technical Paper

Combustion Improvement and Exhaust Emissions_Characteristics in a Direct Injection Natural Gas Engine by Throttling and Exhaust Gas Recirculation

2001-03-05
2001-01-0737
A natural gas direct injection test engine equipped with a newly developed natural gas injector was built. High total hydrocarbon (THC) emission at part-load and high NOx emission at high-load remain as problems for direct injection natural gas engines. THC reduction and combustion improvement by throttling and NOx reduction by EGR were investigated. The following results were obtained: (1) the combustion at light and medium load conditions is improved by throttling. It is possible to improve the thermal efficiency at light-load in spite of the pumping loss by throttling. THC emissions are greatly decreased in this condition; (2) a large NOx reduction can be obtained without combustion deterioration by appropriate EGR at high-load conditions; and (3) it is possible to decrease both THC and NOx emissions by both throttling and EGR at part-load conditions.
Technical Paper

Measurement of the Rate of Multiple Fuel Injection with Diesel Fuel and DME

2001-03-05
2001-01-0527
The accuracy of the injection rate meter based on W. Zeuch's method in the measurement of multiple injection rate and amount was calibrated using a small cam driven piston that is driven by an electric motor. For the pre- or early-injection, a sensor with a high sensitivity can be applied to measure the small pressure increase due to the small injection amount. In case of the multiple injection that has the post and/or late injection, a pressure sensor with a low sensitivity must cover not only the large pressure increase due to the main injection but also the small pressure increase due to the post and/or late injection because the output of the high sensitivity sensor is saturated after the main injection. So the linearity of the low sensitivity pressure sensor was calibrated with the cam driven piston prior to the experiment with the actual injection system.
Technical Paper

Effects of Fuel Injection Characteristics on Heat Release and Emissions in a DI Diesel Engine Operated on DME

2001-09-24
2001-01-3634
In this study, an experimental investigation was conducted using a direct injection single-cylinder diesel engine equipped with a test common rail fuel injection system to clarify how dimethyl ether (DME) injection characteristics affect the heat release and exhaust emissions. For that purpose the common rail fuel injection system (injection pressure: 15 MPa) and injection nozzle (0.55 × 5-holes, 0.70 × 3-holes, same total holes area) have been used for the test. First, to characterize the effect of DME physical properties on the macroscopic spray behavior: injection quantity, injection rate, penetration, cone angle, volume were measured using high-pressure injection chamber (pressure: 4MPa). In order to clarify effects of the injection process on HC, CO, and NOx emissions, as well as the rate of heat release were investigated by single-cylinder engine test. The effects of the injection rate and swirl ratio on exhaust emissions and heat release were also investigated.
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
Technical Paper

Optimization of Hydrogen Jet Configuration by Single Hole Nozzle and High Speed Laser Shadowgraphy in High Pressure Direct Injection Hydrogen Engines

2011-08-30
2011-01-2002
A new ignition-combustion concept named PCC (Plume Ignition Combustion Concept), which ignite rich mixture plume in the middle of injection period or right after injection of hydrogen is completed, is proposed by the authors in order to reduce NOx emissions in high engine load conditions with minimizing trade-offs on thermal efficiency. In this study fundamental requirements of hydrogen jet to optimize PCC are investigated by using single and multi-hole nozzle with a combination of high speed laser shadowgraphy to visualize propagating flame. As a result, it was infered that igniting the mixture plume in the middle of injection period with minimizing jet penetration to chamber wall is effective reducing NOx formation even further.
Technical Paper

Development of High Pressure H2 Gas Injectors, Capable of Injection at Large Injection Rate and High Response Using a Common-rail Type Actuating System for a 4-cylinder, 4.7-liter Total Displacement, Spark Ignition Hydrogen Engine

2011-08-30
2011-01-2005
Key requirements of engines for vehicles are large output power and high efficiency, low emission as well as small size and light weight. Hydrogen combustion engines with direct injection have the characteristics to meet these factors. Tokyo City University, former Musashi Institute of Technology, has studied hydrogen fueled engines with direct injection since 1971. The key technology in the development of hydrogen fueled engines is the hydrogen injector for direct injection with the features such as high injection rate, high response and no hydrogen gas leakage from the needle valve of the hydrogen injector. A common-rail type system to actuate the needle valves of the high pressure hydrogen injectors was intentionally applied to fulfill good performances such as large injection rate, high response and no hydrogen gas leakage.
Technical Paper

Development of DME Engine for Heavy-duty Truck

2006-04-03
2006-01-0052
In recent years, attention has focused on smokeless, sulfur-free dimethyl ethyl (DME) as a clean fuel for heavy-duty diesel vehicles [1]. In this development, the DME engine applied for 20-ton GVW truck was developed under the auspices of the Ministry of Land, Infrastructure and Transport of Japan, the first known instance worldwide. With careful design of the fuel system considering DME's unique fuel characteristics and suitable combustion improvement, higher torque was obtained with DME, compared to diesel fueling. and also use of the proper EGR and catalyst, exhaust emissions levels were generally less than one-fourth of new long-term regulation value promulgated in 2005 Japan.
Technical Paper

A Two-Zone Model Analysis of Heat Release Rate in Diesel Engines

1997-10-01
972959
A thermodynamic two-zone model which assumes a stoichiornetric burned gas region and unburned air region is presented in an attempt to calculate more precise rate of heat release of diesel combustion. A comparison is made of the rate of heat release obtained by the two-zone model with that obtained by the conventional single-zone model. It shows around 10 % increase in the rate of heat release with the two-zone model. The effect of state equation of gas is also examined with the single-zone model and the use of a real gas law in stead of the perfect gas law is found to yield minor difference in the rate of heat release at a high boost operating condition.
Technical Paper

Effect of EGR on NOx and Thermal Efficiency Improvement in a D.I. Methanol Engine for Light Duty Vehicles

1993-03-01
930758
Exhaust gas recirculation (EGR) was applied in a spark-assisted, direct-injection (Dl) neat methanol engine for light duty vehicles. An experimental study has been carried out to analyse for major factors of EGR that influence in the reduction of NOx mass emission and improvement in brake thermal efficiency. EGR on the Dl methanol engine alters intake charge, especially increasing the concentrations of H2O and unburned methanol with rising intake charge temperature. The results of qualitative analyses show that this phenomenon suppresses rapid heat generation at the initial combustion stage, therefore lowering the combustion temperature in the cylinders and leading to a reduction in NOx production.
Technical Paper

Numerical Simulation of Turbulent Mixing in a Transient Jet

1993-10-01
932657
To understand further the mixing process between the injected fuel and air in the combustion chamber of a diesel engine, the turbulent mixing process in a one-phase, two-dimensional transient jet was theoretically studied using the discrete vortex simulation. First, the simulation model was evaluated by comparisons between calculated and experimental data on two-dimensional turbulent jets. Second, the trajectories of the injected fluid elements marked with different colors were graphically demonstrated. Also the process of entrainment of the surrounding fluid into the jet was visually presented using colored tracers.
Technical Paper

Effects of Flame Motion and Temperature on Local Wall Heat Transfer in a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1992-10-01
922208
Local heat flux from the flame to the combustion chamber wall, q̇, was measured the wall surfaces of a rapid compression-expansion machine which can simulate diesel combustion. Temperature of the flame zone, T1, was calculated by a thermodynamic two-zone model using measured values of cylinder pressure and flame volume. A local heat transfer coefficient was proposed which is defined as q̇/(T1-Tw). Experiments showed that the local heat transfer coefficient depends slightly on the temperature difference, T1-Tw, but depends significantly on the velocity of the flame which contacts the wall surface.
Technical Paper

On the Air-Entrainment Characteristics of Diesel Sprays and Flames in a Quiescent Atmosphere

1994-10-01
941924
Air-entrainment characteristics of non-evaporating sprays and flames were measured by means of high-speed photography including ordinary shadowgraphy of sprays, back diffused light illumination photography and laser shadow photography of flames. Effects of injection pressure and nozzle orifice diameter on air-entrainment characteristics were investigated parametrically. The amount of air entrained into a flame was calculated by a two-zone thermodynamic model with data obtained from the photographs and the pressure measurement in the combustion chamber. The air-entrainment characteristics of flames were compared with those of the corresponding sprays. It showed that immediately after the start of ignition, the air entrainment into a flame increased more rapidly as compared with the corresponding spray and then, with the development of diffusion combustion, the air entrainment gradually approached that of the spray.
X