Refine Your Search

Topic

null

Search Results

Standard

Recommended Best Practice for Climatic Wind Tunnel Correlation

2007-01-08
J2777_200701
With many corporations and suppliers conducting development and validation tests at different Climatic Wind Tunnel sites, there is an increasing need for a recommended best practice that defines a process by which climatic wind tunnels can be correlated. This document addresses the test methods and metrics used to obtain similar results, independent of location, for Heating Ventilation and Air Conditioning (HVAC) and Powertrain Cooling (PTC) development. This document should be used as a guideline to make sure key aspects of tunnel testing are covered when comparing various climatic wind tunnel facilities. The depth of the correlation program is ultimately influenced by program objectives. Therefore a correlation program, for the intent and purposes of this document, can range from just a few tests to a full analysis that involves multiple vehicle tests identifying limitations and statistical boundaries.
Standard

Recommended Best Practice for Climatic Wind Tunnel Correlation

2022-11-14
J2777_202211
With many corporations and suppliers conducting development and validation tests at different climatic wind tunnel sites, there is an increasing need for a recommended best practice that defines a process by which climatic wind tunnels can be correlated. This document addresses the test methods and metrics used to correlate results from different facilities, independent of location, for heating ventilation and air conditioning (HVAC) and powertrain cooling (PTC) development. This document should be used as a guideline to make sure key aspects of tunnel testing are covered when comparing various climatic wind tunnel facilities. The depth of the correlation program is ultimately influenced by program objectives; therefore, a correlation program, for the intent and purposes of this document, can range from just a few tests to a full analysis that involves multiple vehicle tests identifying limitations and statistical boundaries.
Standard

Recommended Best Practice for Climatic Wind Tunnel Correlation

2016-01-14
J2777_201601
With many corporations and suppliers conducting development and validation tests at different Climatic Wind Tunnel sites, there is an increasing need for a recommended best practice that defines a process by which climatic wind tunnels can be correlated. This document addresses the test methods and metrics used to obtain similar results, independent of location, for Heating Ventilation and Air Conditioning (HVAC) and Powertrain Cooling (PTC) development. This document should be used as a guideline to make sure key aspects of tunnel testing are covered when comparing various climatic wind tunnel facilities. The depth of the correlation program is ultimately influenced by program objectives. Therefore a correlation program, for the intent and purposes of this document, can range from just a few tests to a full analysis that involves multiple vehicle tests identifying limitations and statistical boundaries.
Standard

Vehicle Testing Requirements for Replacement Refrigerants for CFC-12 (R-12) Mobile Air-Conditioning Systems

2011-11-21
J1659_201111
The purpose of this SAE Recommended Practice is to establish the specific criteria for the selection of a replacement refrigerant for mobile CFC-12 (R-12) air-conditioning (A/C) systems. This document provides guidelines for qualifying candidate refrigerant. The requirements include laboratory and field testing. The alternate refrigerant shall provide comparable system performance as CFC-12 (R-12) as defined herein. The vehicle testing shall be conducted on representative vehicle manufacturer’s product line, in which the refrigerant is intended to be used, such as cycling clutch orifice tube, constant run orifice tube, cycling clutch expansion valve, or continuous run expansion valve refrigerant system. This document is complete only when combined with the requirements of SAE J1657.
Standard

Recommended Practice for an Engineering Analysis for A/C Efficiency Credits

2019-07-18
J3174_201907
Under U.S. GHG and CAFE regulations, manufacturers are required to perform confirmatory testing to validate indirect air conditioning credits (refer to 40 CFR 86.1868-12). The purpose of this Reccomended Practice is to provide manufacturers with updated criteria for the 2020 and later model years. This Recommended Practice discribes the work done by the IMAC GHG CRP to develop test procedures, publish SAE Standards, and determine performance requirements to demonstrate the performance of A/C technologies from the pre-approved credit menu meeting regulatory requirements. Also, enclosed in this Recommended Practice are instructions that can be used by vehicle manufacturers in establishing an engineering analysis in lieu of performing the AC17 test on a vehicle which does not incorporate the credit-generating technologies.
Standard

Recommended Practice for an Engineering Analysis for A/C Efficiency Credits

2022-09-08
J3174_202209
Under U.S. GHG and CAFE regulations, manufacturers are required to perform confirmatory testing to validate indirect air conditioning credits (refer to 40 CFR 86.1868-12). The purpose of this SAE Recommended Practice is to provide manufacturers with updated criteria for the 2020 and later model years. This SAE Recommended Practice is also suitable for reporting credit using and Engineering Analysis to the California Air Resources Board (CARB). This SAE Recommended Practice describes the work done by the IMAC GHG CRP to develop test procedures, publish SAE Standards, and determine performance requirements to demonstrate the performance of A/C technologies from the pre-approved credit menu meeting regulatory requirements. Also, enclosed in this SAE Recommended Practice are instructions that can be used by vehicle manufacturers in establishing an engineering analysis in lieu of performing the AC17 test on a vehicle which does not incorporate the credit-generating technologies.
Standard

Test Procedure for Internal Heat Exchangers of Mobile Air-Conditioning Systems with R-134a or R-1234yf Refrigerant

2023-02-14
J3094_202302
The purpose of this SAE Standard is to define a common set of thermodynamic test conditions to evaluate internal heat exchangers for use with R-134a and R-1234yf refrigerants in mobile air-conditioning systems. This SAE Standard can be used to test actual vehicle IHX designs or standardized IHX samples, which can be used for comparison based on a common length and shape.
Standard

Test Procedure for Internal Heat Exchangers of Mobile Air-Conditioning Systems with R-134a or R-1234yf Refrigerant

2019-02-15
J3094_201902
The purpose of this SAE Standard is to define a common set of thermodynamic test conditions to evaluate internal heat exchangers for use with R-134a and R-1234yf refrigerants in mobile air-conditioning systems. This standard can be used to test actual vehicle IHX designs or standardized IHX samples, which can be used for comparison based on a common length and shape.
Standard

Test Procedure for Internal Heat Exchangers of Mobile Air-Conditioning Systems with R-134a or R-1234yf Refrigerant

2020-04-02
J3094_202004
The purpose of this SAE Standard is to define a common set of thermodynamic test conditions to evaluate internal heat exchangers for use with R-134a and R-1234yf refrigerants in mobile air-conditioning systems. This standard can be used to test actual vehicle IHX designs or standardized IHX samples, which can be used for comparison based on a common length and shape.
Standard

Standard for Refrigerant Risk Analysis for Mobile Air Conditioning Systems

2011-02-04
J2773_201102
This Standard describes methods to understand the risks associated with vehicle mobile air conditioning [MAC] systems in all aspects of a vehicle’s lifecycle including design, production, assembly, operation and end of life. Information for input to the risk assessment is provided in the Appendices of this document. This information should not be considered to be complete, but only a reference of some of the data needed for a complete analysis of the risk associated with the use of refrigerants in MAC systems.
Standard

Standard for Refrigerant Risk Analysis for Mobile Air Conditioning Systems

2020-05-15
J2773_202005
This SAE Standard describes methods to understand the risks associated with vehicle mobile air conditioning (MAC) systems in all aspects of a vehicle’s lifecycle including design, production, assembly, operation, and end of life. Information for input to the risk assessment is provided in the appendices of this document. This information should not be considered to be complete, but only a reference of some of the data needed for a complete analysis of the risk associated with the use of refrigerants in MAC systems.
Standard

Motor Vehicle Heater Test Procedure

2011-05-26
J638_201105
This SAE Recommended Practice, limited to liquid coolant systems, establishes uniform vehicle heater test procedures. Both laboratory and complete vehicle tests are specified in this document. Required test equipment, facilities, and definitions are included. NOTE— Defrosting and defogging procedures and requirements can be found in SAE J902, J381, J382, and J953.
Standard

Safety Standards for Motor Vehicle Refrigerant Vapor Compression Systems

2011-12-19
J639_201112
This SAE Standard applies to refrigerant vapor compression systems that provide cooling and/or heating for passenger cars, light trucks and commercial vehicles (on and off road) that use automotive type mobile air conditioning [MAC] systems. Large trucks, buses and other vehicles that do not use typical automotive a/c systems or use refrigerants not listed in this document are not covered by this standard. This standard covers any vehicle with a MAC system using a belt or electric motor driven compressor. This document provides standards for design, assembly, test and service of MAC systems to minimize environmental, health and safety impacts. Also included are cautionary statements for the service industry to alert technicians to the inadvisability and possible health or safety effects associated with venting refrigerant during service. It is not intended to restrict the use, or further development, of other types of refrigeration systems for mobile air conditioning applications.
Standard

Safety and Design Standards for Motor Vehicle Refrigerant Vapor Compression Systems

2020-11-09
J639_202011
This SAE Standard applies to refrigerant vapor compression systems that provide cooling and/or heating for passenger cars, light trucks, and commercial vehicles (on and off road) that use automotive type mobile air conditioning (MAC) systems. Large trucks, buses, and other vehicles that do not use typical automotive A/C systems or use refrigerants not listed in this document are not covered by this standard. This standard covers vehicles with MAC systems using belt driven compressors and electric motor driven compressors. This document provides industry-recognized standards for the design, assembly, and test of MAC systems, including necessary service equipment, and is intended to cover all phases of the lifetime of MAC systems to minimize environmental, health, and safety impacts. The standards listed in this document cover the currently accepted industry guidelines and procedures.
Standard

PASSENGER CAR WINDSHIELD DEFROSTING SYSTEMS

1964-08-01
J902_196408
The scope of this SAE Recommended Practice is to establish uniform test procedures and minimum performance requirements for passenger car windshield defrosting systems. It is limited to tests that can be conducted on uniform test equipment in commercially available laboratory facilities. The test procedures and minimum performance requirements, outlined in this recommended practice, are based on currently available engineering data. It is the intent that all portions of the recommended practice will be periodically reviewed and revised as additional knowledge regarding vehicle defroster performance is developed.
Standard

PASSENGER CAR WINDSHIELD DEFROSTING SYSTEMS

1967-03-01
J902A_196703
The scope of this SAE Recommended Practice is to establish uniform test procedures and minimum performance requirements for passenger car windshield defrosting systems. It is limited to tests that can be conducted on uniform test equipment in commercially available laboratory facilities. The test procedures and minimum performance requirements outlined herein reflect the extensive knowledge and experience which automotive engineers have accumulated in development of windshield defrosting practices. Current engineering practice prescribes that for laboratory evaluation of defroster systems an ice coating, rather than frost, be applied to the windshield to provide more uniform and repeatable test results, frost formation of uniform density being the more difficult to accomplish. The time element for ice removal, therefore, is longer than that required to remove frost, which is the prime purpose of the defroster system.
Standard

PASSENGER CAR WINDSHIELD DEFROSTING SYSTEMS

1984-10-01
J902_198410
This SAE Recommended Practice provides a test procedure and performance guideline for evaluating passenger car windshield defrosting systems. It is limited to results of tests that can be conducted on uniform test equipment in commercially available laboratory facilities. The current engineering practice prescribes that for laboratory evaluation of defroster systems, a known quantity of water shall be sprayed on the windshield to form an ice coating and then melted by the defroster under specific vehicle operating conditions. The procedure provides uniform and repeatable laboratory test results, even though under actual conditions such a coating would be removed by scraping before driving the vehicle. The performance obtained, therefore, does not directly relate to actual driving conditions, but serves as a laboratory performance indicator for comparing test results within or between systems.
X