Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

A Work-Based Window Method for Calculating In-Use Brake-Specific NOx Emissions of Heavy-Duty Diesel Engines

2008-04-14
2008-01-1301
A work-based window method has been developed to calculate in-use brake-specific oxides of nitrogen (NOx) emissions for all engine speeds and engine loads. During an in-use test, engine speed and engine torque are read from the engine's electronic control unit, and along with time, are used to determine instantaneous engine power. Instantaneous work is calculated using this power and the time differential in the data collection. Work is then summed until the target amount of work is accumulated. The emissions levels are then calculated for that window of work. It was determined that a work window equal to the theoretical Federal Test Procedure (FTP) cycle work best provides a means of comparison to the FTP certification standard. Also, a failure criterion has been established based on the average amount of power generated in the work window and the amount of time required to achieve the target work window to determine if a particular work window is valid.
Technical Paper

Comparison of Averaging Techniques Employed in Calculating Not-to-Exceed Emissions for Heavy-Duty Vehicles

2005-10-24
2005-01-3787
Certification of heavy-duty diesel requires engines to be tested on an engine dynamometer and meet certification in accordance with specific procedures and cycles. However, real-world emissions have been observed to be significantly different from in-laboratory testing. The brake-specific emissions from vehicles are influenced by various operating parameters such as engine speed, load, traffic flow and ambient conditions, hence, vary from the values obtained from the certification tests. In the future, US EPA and other state regulating bodies will require the engine manufacturers to measure in-use emissions from vehicles operating under “real-world” operating conditions. A test vehicle instrumented with West Virginia University's (WVU) Mobile Emissions Measurement System (MEMS), a portable onboard tailpipe emissions measurement system, was used to obtain engine operating conditions, vehicle speed and in-use emission rates of CO2 and NOx.
X