Refine Your Search

Topic

Search Results

Journal Article

Side Crash Pressure Sensor Prediction: An Improved Corpuscular Particle Method

2012-04-16
2012-01-0043
In an attempt to predict the responses of side crash pressure sensors, the Corpuscular Particle Method (CPM) was adopted and enhanced in this research. Acceleration-based crash sensors have traditionally been used extensively in automotive industry to determine the air bag firing time in the event of a vehicle accident. The prediction of crash pulses obtained from the acceleration-based crash sensors by using computer simulations has been very challenging due to the high frequency and noisy responses obtained from the sensors, especially those installed in crash zones. As a result, the sensor algorithm developments for acceleration-based sensors are largely based on prototype testing. With the latest advancement in the crash sensor technology, side crash pressure sensors have emerged recently and are gradually replacing acceleration-based sensor for side impact applications.
Journal Article

Side Crash Pressure Sensor Prediction: An ALE Approach

2012-04-16
2012-01-0046
An Arbitrary Lagrangian Eulerian (ALE) approach was adopted in this study to predict the responses of side crash pressure sensors in an attempt to assist pressure sensor algorithm development by using computer simulations. Acceleration-based crash sensors have traditionally been used to deploy restraint devises (e.g., airbags, air curtains, and seat belts) in vehicle crashes. The crash pulses recorded by acceleration-based crash sensors usually exhibit high frequency and noisy responses depending on the vehicle's structural design. As a result, it is very challenging to predict the responses of acceleration-based crash sensors by using computer simulations, especially those installed in crush zones. Therefore, the sensor algorithm developments for acceleration-based sensors are mostly based on physical testing.
Journal Article

Side Crash Pressure Sensor Prediction for Unitized Vehicles: An ALE Approach

2013-04-08
2013-01-0657
With a goal to help develop pressure sensor calibration and deployment algorithms using computer simulations, an Arbitrary Lagrangian Eulerian (ALE) approach was adopted in this research to predict the responses of side crash pressure sensors for unitized vehicles. For occupant protection, acceleration-based crash sensors have been used in the automotive industry to deploy restraint devices when vehicle crashes occur. With improvements in the crash sensor technology, pressure sensors that detect pressure changes in door cavities have been developed recently for vehicle crash safety applications. Instead of using acceleration (or deceleration) in the acceleration-based crash sensors, the pressure sensors utilize pressure change in a door structure to determine the deployment of restraint devices. The crash pulses recorded by the acceleration-based crash sensors usually exhibit high frequency and noisy responses.
Journal Article

Side Crash Pressure Sensor Prediction for Body-on-Frame Vehicles: An ALE Approach

2013-04-08
2013-01-0666
In an attempt to assist pressure sensor algorithm and calibration development using computer simulations, an Arbitrary Lagrangian Eulerian (ALE) approach was adopted in this study to predict the responses of side crash pressure sensors for body-on-frame vehicles. Acceleration based, also called G-based, crash sensors have been used extensively to deploy restraint devices, such as airbags, curtain airbags, seatbelt pre-tensioners, and inflatable seatbelts, in vehicle crashes. With advancements in crash sensor technologies, pressure sensors that measure pressure changes in vehicle side doors have been developed recently and their applications in vehicle crash safety are increasing. The pressure sensors are able to detect and record the dynamic pressure change when the volume of a vehicle door changes as a result of a crash.
Technical Paper

Prestrain Effects on Static Dent Resistance of Automotive Steels

1991-02-01
910288
In previous investigations, it has been shown that the dent resistance of an auto body panel depends upon the yield strength of the material. However, it is known that the yield strength of steel increases with prestrain due to strain hardening. Panel design and material selection based on the material properties obtained from unstrained sheet steels may lead to inaccurate prediction of the dent resistance of the formed panel. In this study, the effect of prestrain on the static dent resistance of auto body panels was investigated. Using existing empirical relationships between dent resistance and panel properties, it was found that the static dent resistance of an auto panel depends not only on the part geometry and material properties but also on the strain level in the panel. The improvement in dent resistance resulting from a material change from an AKDQ steel to a bake hardenable steel or a high strength steel was determined at different strain levels.
Technical Paper

Testing and Finite Element Modeling of Hydroform Frames in Crash Applications

2007-04-16
2007-01-0981
Hydroformed components are replacing stamped parts in automotive frames and front end and roof structures to improve the crash performance of vehicles. Due to the increasing application of hydroformed components, a better understanding of the crash behavior of these parts is necessary to improve the correlation between full-vehicle crash tests and FEM analysis. Accurately predicting the performance of hydroformed components will reduce the amount of physical crash testing necessary to develop the new components and new vehicles as well as reduce cycle time. Virgin material properties are commonly used in FEM analysis of hydroformed components, which leads to erroneous prediction of the full-vehicle crash response. Changes in gauge and material properties during the hydroforming process are intuitive and can be reasonably predicted by using forming simulations. The effects of the forming process have been investigated in the FEA models that are created for crash analyses.
Technical Paper

Approaches to Modeling the Dynamic Interaction for an Automotive Seat and Occupant System

2007-04-16
2007-01-0988
There are a wide variety of approaches to model the automotive seat and occupant interaction. This paper traces the studies conducted for simulating the occupant to seat interaction in frontal and/or rear crash events. Starting with an initial MADYMO model, a MADYMO-LS/DYNA coupled model was developed. Subsequently, a full Finite Element Analysis model using LS/DYNA was studied. The main objective of the studies was to improve the accuracy and efficiency of CAE models for predicting the dummy kinematics and structural deformations at the restraint attachment locations in laboratory tests. The occupant and seat interaction was identified as one of the important factors that needed to be accurately simulated. Quasi-static and dynamic component tests were conducted to obtain the foam properties that were input into the model. Foam specimens and the test setup are discussed. Different material models in LS/DYNA were evaluated for simulating automotive seat foam.
Technical Paper

Finite Element Modeling of Spot Weld Connections In Crash Applications

2004-03-08
2004-01-0691
Spot welding is the primary joining method used for the construction of the automotive body structure made of steel. A major challenge in the crash simulation today is the lack of a simple yet reliable modeling approach to characterize spot weld separation. In this paper, an attempt has been made to develop a spot weld modeling methodology to characterize spot weld separation in crash simulation. A generalized two-node spring element with 6 DOF at each node is used to characterize the spot weld nugget. To represent the connection of the nugget with the surrounding plates, tied contacts are defined between the spring element nodes and the shell elements of the plate. Three general separation criteria are proposed for the spot weld that include the effects of speed and coupled loading conditions. The separation criteria are implemented into a commercially available explicit finite element code.
Technical Paper

Finite Element Modeling of the Frame for Body on Frame Vehicles, Part 1 - Subsystem Investigation

2004-03-08
2004-01-0688
For a body-on-frame (BOF) vehicle, the frame is the major structural subsystem to absorb the impact energy in a frontal vehicle impact. It is also a major contributor to energy absorption in rear impact events as well. Thus, the accuracy of the finite element frame model has significant influence on the quality of the BOF vehicle impact predictability. This study presents the latest development of the frame modeling methodology on the simulation of BOF vehicle impact performance. The development is divided into subsystem (frame sled test) and full system (full vehicle test). This paper presents the first phase, subsystem testing and modeling, of the frame modeling development. Based on the major deformation modes in frontal impact, the frame is cut into several sections and put on the sled to conduct various tests. The success of the sled test highly depends on whether the sled results can replicate the deformation modes in the full vehicle.
Technical Paper

Finite Element Modeling of the Frame for Body-On-Frame Vehicles: Part II - Full Vehicle Crash

2004-03-08
2004-01-0689
This study focuses on the modeling of a frame in a body-on-frame (BOF) vehicle to improve the prediction of vehicle response in crashes. The study is divided into three phases - component (frame material modeling), subsystem (frame sled test) and full system (full vehicle test). In the component level, we investigate the available strain rate data, the performance of various material models in crash codes and the effect of the strain rate in crash simulation. In the subsystem phase, we incorporate the strain rate modeling and expand the scope to include both the forming and the welding effects in the subsystem CAE model to improve the correlation between CAE and test. Finally the improved frame modeling methodology with strain rate, forming and welding effects is adopted in full vehicle model. It is found that the proposed frame modeling methodology is crucial to improve the pulse prediction of a full vehicle in crashes.
Technical Paper

Important Modeling Practices in CAE Simulation for Vehicle Pitch and Drop

2006-04-03
2006-01-0124
Vehicle pitch and drop has become an important subject to crash analysis due to the recent FMVSS208 requirements for unbelted occupant. During frontal impact, the excessive header drop due to significant vehicle pitch and drop can induce the contact between occupant's head and sun visor. To avoid this issue, structure design for reducing vehicle pitch and drop is essential to crash safety. Historically, CAE simulation has been used in structure design during vehicle development process. Therefore, the quality of CAE modeling for replicating vehicle pitch and drop at physical test is crucial for assisting the structure design. In this paper, the most effective components in CAE model to vehicle pitch and drop have been identified and ranked by using the results of the sensitivity study. Hence the model quality can be emphasized on those major components including front horn, kick-down of front frame, body structure at upper load path, and body mounts.
Technical Paper

Modeling Energy Absorption and Deformation of Multicorner Columns in Lateral Bending

2006-04-03
2006-01-0123
The frame rail has an impact on the crash performance of body-on-frame (BOF) and uni-body vehicles. Recent developments in materials and forming technology have prompted research into improving the energy absorption and deformation mode of the frame rail design. It is worthwhile from a timing and cost standpoint to predict the behavior of the front rail in a crash situation through finite element techniques. This study focuses on improving the correlation of the frame component Finite Element model to physical test data through sensitivity analysis. The first part of the study concentrated on predicting and improving the performance of the front rail in a frontal crash [1]. However, frame rails in an offset crash or side crash undergo a large amount of bending. This paper discusses appropriate modeling and testing procedures for front rails in a bending situation.
Technical Paper

Numerical Investigation of Effects of Frame Trigger Hole Location on Crash Behavior

2005-04-11
2005-01-0702
The front rail plays a very important role in vehicle crash. Trigger holes are commonly used to control frame crush mode due to their simple manufacturing process and flexibility for late changes in the product development phase. Therefore, a study, including CAE and testing, was conducted on a production front rail to understand the effects of trigger hole shape, size and orientation. The trigger hole location in the front rail also affects crash performance. Therefore, the effect of trigger hole location on front rail crash behavior was studied, and understanding these effects is the main objective of this study. A tapered front rail produced from 1.7 mm thick DP600 steel was used for the trigger hole location investigation. Front rails with different trigger spacing and sizes were tested using VIA sled test facility and the crash progress was simulated using a commercial code RADIOSS. The strain rate, welding and forming effects were incorporated in the front rail modeling.
Technical Paper

Modeling of Spot Weld under Impact Loading and Its Effect on Crash Simulation

2006-04-03
2006-01-0959
Spot weld is the primary joining method to assemble the automotive body structure. In any crash events some separation of spot-welds can be expected. However, if this happens in critical areas of the vehicle it can potentially affect the integrity of the structure. It will be beneficial to identify such issues through CAE simulation before prototypes are built and tested. This paper reports a spot weld modeling methodology to characterize spot weld separation and its application in full vehicle crash simulation. A generalized two-node spring element with 6 DOF at each node is used to model the spot weld. Separation of spot welds is modeled using three alternative rupture criteria defined in terms of peak force, displacement and energy. Component level crash tests are conducted using VIA sled at various impact speeds to determine mean crush load and identify possible separation of welds.
Technical Paper

Dynamic Dent Resistance Performance of Steels and Aluminum

1993-03-01
930786
Body panel performance properties such as denting force, oil canning/critical buckling load, initial and secondary stiffnesses under dynamic loading (drop weight test) were measured for different strength steels and two aluminum alloys using both flat and curved sheets. It was found that all these properties varied with the drop velocity. For the steels, the denting force steadily increased with the increase in drop velocity. For the aluminum alloys, the denting force increased with the drop velocity at lower velocities and decreased or remained unchanged at higher velocities. The oil canning/critical buckling load increased with the increase in drop velocity and initial and secondary stiffnesses decreased with the increase in drop velocity for both steel and aluminum. The dent resistance performance for some aluminum alloys with thicker gauge is comparable to steels dent tested at lower velocities.
Technical Paper

Dynamic Testing and CAE Modeling of Body Mount An Application in the Frontal Impact Analysis of a Body-on-Frame Vehicle

2003-03-03
2003-01-0256
This study is a systematic investigation of the body mounts' dynamic characteristics in component, sub-system and full system levels and its application in the frontal impact analysis of a body-on-frame (BOF) vehicle. Concluded from the component study, the body mount is modeled by non-linear spring with built-in damage and rupture properties. The sub-system study reveals the importance of modeling the interaction between the body mount and its surrounding structure. A general-purpose interaction modeling is developed to provide a realistic CAE simulation of this interaction behavior. The full system is mainly for methodology validation. Four 90-degree frontal and the one IIHS offset frontal crash tests are used to evaluate the performance of the body mount in low and high speeds and its capability of predicting the body mount and the floor pan failures.
Technical Paper

Methodology for Testing of Spot-Welded Steel Connections Under Static and Impact Loadings

2003-03-03
2003-01-0608
Spot-welds are the primary joining methods for steel sheet metals used in the manufacturing of automobile body structure. Often the impact responses are significantly affected by the characteristic properties, such as stiffness, failure strength, etc of spot-welds. In view of this, understanding the behavior and the properties of spot-welds under static and impact loadings are critical for accurate CAE analysis of vehicle impact events. To this end, a comprehensive DOE based spot-weld testing has been undertaken by considering a wide variety of variables. The test data thus obtained were analyzed to determine the requisite mechanical properties of spot-welds as a function of the key variables such as gage, yield strengths, speed, etc. Spot-weld connections have been tested for gages ranging from 0.7 to 3.0 mm using a unique specimen configuration developed at Ford.
Technical Paper

Development of Dynamic Dent Resistance Testing Procedures

2003-03-03
2003-01-0607
The dent resistance of an automotive body panel has been used as one of key design parameters for automotive body panels. Quasi-static dent testing procedures have been well documented in North America using A/SP Standard Dent Resistance Test Procedures and numerous publications in static denting are also available. However, test procedures under dynamic denting are not very well documented and limited data exist on dynamic denting performance of automotive body panels. In this paper, dynamic dent tests are carried out using different impact velocities and different test procedures. The advantages and disadvantages of test procedures are discussed. Different ways to characterize the dynamic dent test results are investigated and discussed. Due to higher impact velocity during the dynamic dent testing, the acceleration effect must be considered in the data analysis. Experiments were carried out on a hydraulic controlled dynamic dent tester.
Technical Paper

Strain Hardening and Forming Limits of Automotive Steels

1995-02-01
950700
The formability window of a material depends upon the forming limit and its strain distribution ability. For two materials with the same forming limit, the formability performance is governed by their strain distribution ability. In this study, strain hardening behavior of different strength steels was investigated using a uniaxial tension test and the forming limit was studied using both Marciniak cup and dome tests. The n-value of steels varies with strain. Different strain hardening behaviors are found between mild steels and high strength steels. Strain distribution ability of steels increases with the increase in the overall n-value. The peak n-value at a low strain level enhances the strain distribution ability of the steel. It has been shown from both theoretical and experimental studies that a constant thickness strain line exists on the left side of the forming limit curve.
Technical Paper

Finite Element Simulation of the EEVC Offset Deformable Barrier

1997-04-08
971531
Statistic shows the majority of real world frontal collisions involve only partial overlap of the vehicle front end. Thus the European Experimental Vehicle Committee (EEVC) has established a safety standard and test procedure utilizing a deformable barrier for offset impacts. The offset deformable barrier (ODB) is designed to represent the characteristics of a vehicle front end. Therefore, it can replace a target vehicle and the offset test can be conducted economically. Many component, sub-assembly and full vehicle system tests have been conducted in Ford using the EEVC ODB. Based on the various tests, the barrier responds differently depending on the front end design and the size of an impacting vehicle. Sometimes the front end of a test vehicle punches through the barrier. Also rupture of aluminum sheets and tearing of honeycomb materials are often observed in post-test barriers.
X