Refine Your Search

Topic

Search Results

Standard

Capacitive Fuel Gauging System Accuracies

2021-04-23
CURRENT
AIR1184B
This report is intended to identify the various errors typically encountered in capacitance fuel quantity measurement systems. In addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of fuel measurement accuracy using capacitance based sensing is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of capacitive fuel gauging operation can be found in AIR5691.
Standard

FUEL GAGING SYSTEM ACCURACIES

1973-01-01
HISTORICAL
AIR1184
It is intended to provide capacitance gaging system "specifiers" with the necessary tools to make value judgements concerning the various errors typically encountered in systems of this type. Thus, in addition to merely identifying the error-causes, descriptions are given concerning the basic factors from which these error-causes derive. This knowledge, when complemented with appraisals of the relative costs of minimizing the error-causes, will furnish the system specifier with a powerful tool with which to optimize gaging system accuracy, and thus, to obtain the "best possible" overall system within the constraints imposed by both design and budgetary considerations. Since the subject of capacitance gaging accuracy is quite extensive, and in some instances very complex, no attempt is made herein to present an all-inclusive and fully comprehensive evaluation of the subject. Rather, the major contributors to gaging system inaccuracy are discussed.
Standard

Optical equipment safety in fuel tanks

2018-11-15
WIP
ARP7977
This project aims to develop a framework of requirements which support safe installation and operation of optical devices within an aircraft fuel tank, specifically: 1: To determine optical power and energy limits which ensure safe operation of optical installations within an aircraft fuel tank over aircraft life and under all phases of flight, taking the limits provided in IEC 60079-28:20015 as a starting point. 2: To demonstrate optical and electrical power and energy equivalences, where possible. 3: To determine requirements for optical installations, including bonding and electrostatic discharge for non-conductive components such as optical fibres. 4: To provide guidelines for analysis of the hazards presented by the typical internal components of optical devices, such as failure modes of photo diodes and cells.
Standard

Aircraft Flame Arrestor Installation Guidelines and Test Methods

2021-08-26
CURRENT
ARP5776
The scope of this document is to provide pertinent information on demonstrating the performance of Flame Arrestors, also known as Fuel Vent Protectors (FVPs), in preventing the propagation of a deflagration when the arrestors are subjected to aerospace-representative flames produced by the venting of flammable gas through the arrestor. Test procedures for two separate combustion-loading profiles are presented herein: The flame hold test condition, and the flame propagation test condition. For the flame hold test condition, the applicability of two separate critical flows is discussed in which one flow results in the greatest flame arrestor temperature and a second flow results in the greatest temperature of the surrounding structure.
Standard

Nozzles and Ports - Gravity Fueling Interface Standard for Civil Aircraft

1997-08-01
HISTORICAL
AS1852B
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type. In addition, this document defines the minimum fuel nozzle tip dimensions for turbine fuel ground service equipment and the maximum fuel nozzle tip diameter for gasoline ground service equipment.
Standard

Nozzles and Ports – Gravity Fueling Interface Standards for Civil Aircraft

2012-01-03
CURRENT
AS1852D
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel, and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type and with gasoline as the emergency fuel type. This SAE Aerospace Standard (AS) also defines the features and dimensions for airframe refueling ports on civil aircraft that require the exclusive use of turbine fuel as an engine fuel. In addition, this document defines the minimum fuel nozzle spout dimensions for turbine fuel ground service equipment, and the maximum fuel nozzle spout diameter for gasoline ground service equipment.
Standard

Nozzles and Ports - Gravity Fueling Interface Standard for Civil Aircraft

2006-03-24
HISTORICAL
AS1852C
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel, and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type and with gasoline as the emergency fuel type. This SAE Aerospace Standard (AS) also defines the features and dimensions for airframe refueling ports on civil aircraft that require the exclusive use of turbine fuel as an engine fuel. In addition, this document defines the minimum fuel nozzle spout dimensions for turbine fuel ground service equipment, and the maximum fuel nozzle spout diameter for gasoline ground service equipment.
Standard

Fuel Level Point Sensing

2020-11-30
CURRENT
AIR6325
This report is intended to identify the various existing technologies used for a fuel level sensing system. In addition to sensing technologies, it describes the basic architecture of fuel level sensing systems and their association with fuel gauging system to increase integrity of fuel measurement and management. As the fuel level sensing system is generally based on electrical components within fuel tanks, a specific focus is made on fuel tank explosion safety protection. An overview of the capacitive fuel gauging operation can be found in AIR5691.
Standard

GLOSSARY OF TERMS - AIRCRAFT GROUND REFUELING

2007-12-04
HISTORICAL
AIR4783
This SAE Aerospace Information Report (AIR) presents a glossary of terns commonly utilized in the ground delivery of fuel to an aircraft and some terms relating to the aircraft being refueled.
Standard

Aircraft Fuel System Design Guidelines

2023-09-27
WIP
AIR7975A
This document describes the major design drivers and considerations when designing a fuel system for a large commercial aircraft. It discusses the design at a system/aircraft level, and is not intended as a design manual for individual system components, though it does refer out to other SAE specifications where more detail on specific components and sub systems is given. It does include examples of a number of calculations associated with sizing of fuel systems, based on those given in NAV-AIR-06-5-504, as well as an appendix summarizing basic fluid mechanical equations which are key for fuel system design. It is acknowledged that most of these calculations would today be performed by modelling tools, rather than by hand, but it is considered important for the designer to understand the principles. It is intended that later issues of this document will include appendices which give specific considerations for military aircraft, smaller commercial aircraft, and rotorcraft.
Standard

Minimization of Electrostatic Hazards in Aircraft Fuel Systems

2013-08-09
HISTORICAL
AIR1662A
This SAE Aerospace Information Report (AIR) provides background information, technical data and related technical references for minimization of electrostatic hazards in aircraft fuel systems. Techniques used to minimize the electrostatic hazard include: a Reducing fueling rate into tank bays including use of multiple refueling inlet nozzles. b Reducing refuel plumbing flow velocities. c Introducing fuel into the tank at a low velocity near the bottom and directing it to impinge upon a grounded conducting surface. d Avoiding electrically isolated conductors in the fuel tank. e Using conductivity additives in the fuel.
X