Refine Your Search

Topic

Search Results

Technical Paper

Modeling and Analysis of Front End Accessory Drive System with Overrunning Alternator Decoupler

2020-04-14
2020-01-0398
The generator is an important loaded component of an engine front end accessory drive system (EFEADS). With a huge moment of inertia and a highest running speed, the vibration and noise often occurs in operation, which has an effect on the service life. Thus an overrunning alternator decoupler (OAD) is used in the EFEADS for reducing the vibration of system. In this paper, a model of EFEADS with an OAD is established. The impact of the OAD on the dynamic responses of pulley of generator and the system are analyzed, and is verified by bench experiments. And the influence of parameters, such as spring stiffness, moment of inertia of generator and loaded torque on the dynamic performances of the system are studied. The influence of misalignment in pulleys on the dynamic performance of system is also discussed. The presented method is useful for optimizing the dynamic performance of system, such as the oscillation of tensioner arm and the slip ratio of the belt-generator pulley.
Technical Paper

Analysis for Dynamic Performances of Engine Front End Accessory Drive System under Accelerating Condition

2020-04-14
2020-01-0399
A model for a generic layout of an engine front end accessory drive system is established. The dynamic performances of the system are obtained via a numerical method. The dynamic performances consist of the oscillation angle of tensioner arm, the slip ratio of each pulley and the dynamic belt tension. In modeling the system, the hysteretic behavior of an automatic tensioner, the loaded torque of the accessory pulley versus the engine speed, the torsional vibration of crankshaft and the creep of the belt are considered. The dynamic performances of the system at steady state and under accelerating condition are analyzed. An example is provided to validate the established model. The measured results show that the torsional vibration of crankshaft is larger and the dynamic performances of the system are different under accelerating conditions, though the acceleration is small.
Journal Article

Experimental and Calculation Analysis of Rotational Vibration for an Engine Front End Accessory Drive System

2011-05-17
2011-01-1534
Experimental methods for measuring static and dynamic characteristics of an engine Frond End Accessory Drive System (FEADS) are presented. The static performance of a FEADS is the static tension of the belt, and the dynamic properties of a FEADS are transverse vibration of belt, and rotational vibration performances that include rotational response of pulleys and tensioner arm, dynamic tension of belt span, slip factor between belt and pulley. A mathematical model and calculation method for rotational vibration analysis of a 8 pulley-belt FEADS is established. In the model, creeping effect of a belt on pulley wrap arc, viscous damping and dry friction of a tensioner are considered. In calculation of dynamic performances of the FEADS, the excitation torques with multi-frequency components from crankshaft torsional vibration are obtained from the measurement.
Technical Paper

Dynamic Characteristic Analysis of a Hydraulic Engine Mount with Lumped Model Based on Finite Element Analysis

2003-05-05
2003-01-1462
Hydraulic Engine Mount (HEM) is now widely used as a highly effective vibration isolator in automotive powertrain. A lumped parameter model is a traditional model for modeling the dynamic characteristics of HEM, in which the system parameters are usually obtained by experiments. In this paper, Computational Fluid Dynamics (CFD) method and nonlinear Finite Element Analysis (FEA) are used to determine the system parameters. A Fluid Structure Interaction (FSI) FEA technique is used to estimate the parameters of volumetric compliances, equivalent piston area, inertia and resistance of the fluid in the inertia track and decoupler of a HEM. A nonlinear FEA method is applied to determine the dynamic stiffness of rubber spring of the HEM. The system parameters predicated by FEA are compared favorably with experimental data and/or analytical solutions.
Technical Paper

A Method for Calculating High Frequency Dynamic Characteristics of Rubber Isolators under Different Preloads

2022-03-29
2022-01-0307
Because the power unit of electric vehicle has large torque, the rubber mount of electric vehicle is fully compressed under the condition of full throttle acceleration. When designing the mount of electric vehicle, the dynamic-to-static stiffness ratio of mount under the case should be as low as possible to improve the vibration isolation rate of the mount. In this paper, a method for calculating the high frequency dynamic characteristics of rubber isolators under different preloads is presented. Firstly, the dynamic characteristics of rubber specimens under various shear pre-strains were tested. The test results show that the dynamic stiffness of specimen decreases at first and then increases with the increase of shear strain. The viscoelastic parameters of rubber in frequency domain under different pre-strain were identified according to the experimental data. Secondly, a finite element modeling method was proposed.
Technical Paper

Design of Muffler in Reducing Hiss Noise of Turbocharged Vehicles

2022-03-29
2022-01-0315
The application of turbochargers in fuel vehicles brings high-frequency noise, which seriously affects the vehicle's ride comfort. The hiss noise of a turbocharged car is improved in this paper. Firstly, under different operating conditions and whether the air intake system is wrapped, the noise in the vehicle cabin and the driver's right ear is tested, and the noise sources and noise characteristics are identified. Then, the acoustic calculation model of the muffler is established, and the transmission loss (TL) of the original muffler behind the turbocharger (MBT) is calculated. The TL of the muffler is measured by the double-load impedance tube method. The finite element calculation model is verified by comparing the TL of muffler calculated with tested. Thirdly, the MBT is redesigned. The improved muffler significantly improves the performance of eliminating high-frequency noise, and its TL beyond 20 dB is expanded to the band of 1600 ~ 3500 Hz.
Technical Paper

Research on Mid-Low Frequency Noise Reduction Material and Its Structure Design

2021-04-06
2021-01-0815
Aiming at the problem of middle and low frequency noise absorption, a combined sound-absorbing structure is designed based on porous material and a coiled-up cavity resonance structure. Combined with the sound absorption principle of porous materials and coiled-up cavities, a theoretical analytical model was established. By the finite element method, the sound absorption coefficient curve of the combined structure in a frequency range of 500-2000Hz is calculated, and the correctness of the analytical calculation and the finite element simulation calculation was verified in the impedance tube experiment. The results show that the combined structure has good sound absorption performance in the 500Hz-2000Hz frequency band, and the sound absorption peak appears near the 1108Hz frequency, reaching nearly perfect sound absorption. Compared with a single porous material, the sound absorption performance of the combined structure is better.
Technical Paper

Structural Vibration Analysis and Sound Quality Improvement for a Four-Cylinder Engine

2023-05-08
2023-01-1153
An Inline 4-cylinder engine is equipped with second-order balance shafts.When the engine is running under full load in 5000rpm,the engine generated severe structural radiation noise.The bench test analysis shows that the main reason is the resonance of the engine near 800Hz and 1500Hz. In this paper, a method for modeling and analyzing the vibration of the engine structure is proposed, and the sound quality of the engine is evaluated and imporved by the Moore–Glasberg loudness method. Firstly, the finite element model of the engine was established, and the experimental modes of the engine casing assembly, crankshaft and balance shaft were measured. The natural frequencies and modal shapes obtained by calculation and experiment were compared, which validates the established finite element model.Secondly, a flexible multi-body dynamic model of the engine was established.
Technical Paper

Modeling and Analysis of the Hysteresis Behavior of the Tensioner

2022-03-29
2022-01-0609
The tensioner of the engine front end accessory drive system was taken as a study object, and the mechanical structure and working principle of the automatic tensioner were analyzed. The hysteresis behavior test of tensioner torque-angular displacement was carried out, and the effects of different excitation frequencies and excitation amplitudes on the hysteresis behavior of the tensioner were analyzed. According to the modified Dahl hysteresis model, the model parameters of the tensioner was identified. Based on the identified model parameters, the hysteresis behavior of the tensioner was calculated, and the calculation model accuracy was verified with the tested results. The influence of the hysteresis curve transition area exponent on the tensioner behavior was studied. The dynamic behavior of the engine front end accessory drive system was simulated using the simulation software.
Technical Paper

Design of Isolation Pulley in Front of Crankshaft to Reduce Vibrations of Front End Accessory Drive System

2015-06-15
2015-01-2254
The driving pulley is often used as a Torsional Vibration Damper (TVD) for the crankshaft in the front end accessory drive (FEAD) system. Although the crankshaft torsional vibrations are dampened, they are transmitted to the belt transmission and therefore to the driven accessories. The isolation pulley is a new device to reduce the belt tension fluctuation by isolating the belt transmission from the crankshaft torsional vibrations. A five-pulley system with isolation pulley is presented and a non-linear model is established to predict the dynamic response of the pulleys, tensioner motion, tension fluctuation and slippage. The model works in the time domain with Runge-Kutta time-stepping algorithm. The numerical simulation results of harmonic excitations show that the amplitudes of the belt tension fluctuation and the vibrations of each component are reduced significantly. Moreover, the effect of isolation pulley parameters on the system natural frequencies is demonstrated.
Technical Paper

Modeling and Validation for the Hysteretic Behavior of an Automatic Belt Tensioner

2019-06-05
2019-01-1546
An automatic tensioner used in an engine front end accessory drive system (EFEADS) is taken as a study example in this paper. The working torque of the tensioner, which consists of the spring torque caused by a torsional spring and the frictional torques caused by the contact pairs, is analyzed by a mathematic analysis method and a finite element method. And the calculation and simulation are validated by a torque measurement versus angular displacement of a tensioner arm. The working torques of the tensioner under a loading and an unloading process are described by a bilinear hysteretic model, and are written as a function with a damping ratio. The rule of the action for the damping devices is investigated based on the simulation and a durability test of the tensioner. A finite element method for the tensioner without damping device is established. Then the radial deformation for the torsional spring under an unconstrained state is obtained.
Technical Paper

Modeling and Analysis for Dynamic Performances of a Two-Layer Engine Front End Accessory Drive System with an Overrunning Alternator Decoupler

2021-04-06
2021-01-0656
Two-layer engine front end accessory drive systems (TEFEADS) are adopted generally by commercial vehicles due to the characteristics of the accessory pulleys, which have large torque and moment of inertia. An overrunning alternator decoupler (OAD) is an advanced vibration isolator which can reduce the amplitude of torsional vibration of alternator rotor effectively by an one-way transmission and they are more and more widely used in vehicles. This paper established a model of a generic layout of a TEFEADS with an OAD. The coupling effect between the TEFEADS, the nonlinear characteristics of OAD, the torsional vibration of crankshaft and the creeping on the belt were taken into account. A nine pulleys model was provided as a study example, the dynamic responses, which are respectively under steady and accelerating conditions, of the system were calculated by the established method and compared with the bench experiment.
Technical Paper

The Analytical Method for Calculating the Hysteretic Behavior of an Asymmetry Tensioner

2021-04-06
2021-01-0655
An automatic tensioner with an asymmetric damping structure used in an engine front end accessory drive system is analyzed. An analytical model is established to calculate the hysteretic behavior of the tensioner. The contact characteristics of contact pairs are modeled and investigated for disclosing relation between contact pair, friction and hysteretic loop of an automatic belt tensioner. The presented models are validated by a torque measurement versus angular displacement of a tensioning arm. The errors between the calculation and the measurement are analyzed. The working torques of the tensioner during loading and unloading process are described by a bilinear hysteretic model and are written as a function with a damping ratio. The influence of damping structure parameters on the hysteretic torque is investigated. The method presented in this paper can be used for predicting the nonlinear characteristics of a tensioner before prototyping.
Technical Paper

An Approximate Estimation Method for Transmission Loss Peak Frequency of Membrane-Type Acoustic Metamaterials

2021-04-06
2021-01-0672
Membrane-type acoustic metamaterials consist of a tensioned membrane fixed on the frame and an additional mass attached to the membrane. The sound insulation performance of membrane-type acoustic metamaterials is much better than the acoustic mass law predictions at transmission loss (TL) peak frequencies. In this paper, an equivalent mechanical model of membrane-type metamaterials is established. Through the vibration analysis of the membrane with tensile force as the main elastic restoring force, an approximate estimation method of the TL peak frequency of Membrane-type acoustic metamaterials is proposed, the effects of membrane tension, membrane size, mass and size of additional mass on the peak frequency of TL were analyzed quantitatively. The COMSOL software was used to establish a finite element analysis model and calculate the TL curve of the metamaterial at a frequency of 100-1600 Hz.
Technical Paper

Sound Transmission Loss of Acoustic Metamaterial with Lightweight Frame and Hard Membrane-Like Material

2023-05-08
2023-01-1057
To reduce the noise in the frequency range of 100Hz~1000Hz, a metamaterial structure composed of lightweight frame, hard membrane-like material and added mass is proposed in this paper. The advantage of this structure is that it is lightweight and the membrane-like material does not need to be stressed in advance. Finite element method (FEM) and experiment are used to investigate the sound transmission loss (STL) performance of the metamaterial structure. The results show that the peak STL is caused by the local resonance of the added mass and the membrane-like material. The valley versus frequency results from the resonance frequencies of metamaterial structure, and it is divided into three resonance frequencies: resonance frequencies from added mass, membrane-like material and frame.
Technical Paper

Parameters Identification of Mooney-Rivlin Model for Rubber Mount Based on Surrogate Model

2023-05-08
2023-01-1150
As an important vibration damping element in automobile, the rubber mount can effectively reduce the vibration transmitted from the engine to the frame. In this study, a method of parameters identification of Mooney-Rivlin model by using surrogate model was proposed to more accurately describe the mechanical behavior of mount. Firstly, taking the rubber mount as the research object, the stiffness measurement was carried out. And then the calculation model of the rubber mount was established with Mooney-Rivlin model. Latin hypercube sampling was used to obtain the force and displacement calculation data in different directions. Then, the parameters of the Mooney-Rivlin model were taken as the design variables. And the error of the measured force-displacement curve and the calculated force-displacement curve was taken as the system response. Two surrogate models, the response surface model and the back-propagation neural network, were established.
Journal Article

Finite Element Model Modification of the Mount Bracket Based on Modal Test

2022-03-29
2022-01-0301
The mount bracket is an important part of the mount system, and its dynamic characteristics will affect dynamic characteristics of the mount system, which means it will affect NVH(Noise, Vibration, Harshness) of the vehicle. Based on the large error between the test result and the finite element analysis(FEA) result, the dynamic finite element model of the mount bracket can be modified from the material parameters and the equivalent boundary of the bolt joint. In this paper, a method to identify the parameters of the mount bracket model by combining modal test, FEA, and the mathematical optimization model was presented. Firstly, based on HyperStudy platform, the optimization objective was minimizing the natural frequency error between FEA and free mode test, and the material parameters of the bracket to be identified were used as design variables to build the optimization function. The global response surface method was used for iteration to complete the identification.
Technical Paper

Analysis of the Dynamic Performance of an Engine Front End Accessory Drive System with an Asymmetric Damping Tensioner

2020-04-14
2020-01-0409
The automatic tensioner is an important component of the engine front end accessory drive system (EFEADS). It maintains the tension of the belt steadily and reduces the slip of pulley, which is benefit for improving the life of V-ribbed belt. In this paper, an EFEADS model is established which is considering with the hysteretic behavior and the asymmetry of friction damping of a tensioner. A four-pulley EFEADS is taken as a study subject. The dynamic responses of system, such as the oscillation angle of each pulley, the slip factor of pulley, the oscillation of tensioner arm and the dynamic belt tension are analyzed with symmetric damping and asymmetric damping tensioner. Meanwhile, the influence of asymmetric damping factors of tensioner on the dynamic response of EFEADS is also investigated.
Technical Paper

Modeling and Simulation Analysis of Electric Vehicle Battery Cooling System

2023-04-11
2023-01-0771
A battery cooling system model of electric vehicle was established. The system model consists of a battery pack, a pump, a radiator, and a fan. A cooling plate was used to cool the battery pack, and the coolant flow rate in the cooling plate was controlled by the pump. The heat in the battery cooling system was released into the ambient air through the radiator. A finite element analysis model of the cooling plate was established to calculate the pressure drop of the cooling plate. A coupled dynamics model of the battery pack-radiator cooling system was established to simulate the temperature of the battery pack during charging and discharging. Tests were carried out to obtain the pressure drop of the cooling plate and the temperature of the battery pack under different working conditions. The simulation results and test results were compared and analyzed, and the accuracy of the models were verified.
Technical Paper

Design of a Car Battery Box with Combined Steel Stamped and Aluminum Extruded Process

2023-04-11
2023-01-0607
In the manufacturing of battery boxes using the aluminum extruded process, poor consistency of products and a short life of the die for making aluminum structural sections are usually observed. A new method of producing battery boxes is proposed that combines steel stamped and aluminum extruded process. This paper first describes the design requirements for a battery box using a new process, and several important issues such as weld seam arrangement and error proofing in the manufacturing process are discussed. To address the issue of weld seam arrangement, the following three principles should be considered in the design: These principles include that the profile lap angle should be above 90°, three or more beams should not be lapped too closely together, and multiple brackets in close proximity should be designed as one unit.
X