Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Combustion and Emissions for Engineers

Public awareness regarding pollutants and their adverse health effects has created an urgent need for engineers to better understand the combustion process as well as the pollutants formed as by-products of that process. To effectively contribute to emission control strategies and design and develop emission control systems and components, a good understanding of the physical and mathematical principles of the combustion process is necessary. This course will bring issues related to combustion and emissions "down to earth," relying less on mathematical terms and more on physical explanations and analogies.
Training / Education

Emissions-Related OBD Systems A Design Overview

This course is designed to provide an overview of the fundamental design objectives and the features needed to achieve those objectives for generic on-board diagnostics. The basic structure of an on-board diagnostic will be described along with the system definitions needed for successful implementation.
Training / Education

Design and Process Failure Modes and Effects Analysis (FMEA)

This course covers the five types of FMEAs with emphasis on constructing  Design and Process FMEAs. Each column of the FMEA document will be clearly explained using an actual FMEA example.  The course covers various methods for identifying failure modes, effects and causes with special attention given to severity, occurrence, and detection tables and how to develop effective recommended actions strategies.  Throughout the class, participants will be involved in exercises/actual projects that demonstrate and incorporate direct application of learned principles.
Training / Education

Fundamentals of Fatigue Analysis

Fatigue is a structural failure mode that must be recognized and understood to develop products that meet life cycle durability requirements. In the age of lightweighting, fatigue strength is an important vehicle design requirement as engineers struggle to meet stringent weight constraints without adversely impacting durability. This technical concept course introduces the fatigue failure mode and analysis methods. It explains the physics of material fatigue, including damage accumulation that may progress to product failure over time, and it provides the needed foundation to develop effective fatigue prediction capabilities.
Training / Education

DFMEA Overview, Application and Facilitation

This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. This course serves a dual purpose: it delves into fundamental DFMEA principles and their practical applications while also offering guidance on leading DFMEA teams. Participants will be introduced to crucial FMEA concepts, along with the theoretical foundations before exploring how to implement these concepts in their DFMEA endeavors. Often, the FMEA process can become a mere replication of past efforts, which poses risks for both organizations developing the products under scrutiny and the end-users.
Training / Education

Design Verification Plan & Report (DVP&R) - Overview and Application

This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. In this one-day course on Design Verification Plan and Report Overview and Application, participants will be introduced to important concepts, the basic theory behind the concepts, and discuss how these concepts can be applied to the client's design reliability activities. Participant involvement will be maximized to demonstrate and reinforce the concepts through reading assignments, group discussions, and exercises where students will begin a DVP&R on a client product.
Training / Education

DFMEA Overview and Application

During this DFMEA Overview and Application course, participants will be introduced to important FMEA concepts, the basic theory behind the concepts, then discuss how these concepts can be applied to the customer's design FMEA activities. Participant activities include: reading assignments, group discussions, exercises, building Block Diagrams as a group, and beginning a DFMEA on a customer’s product.
Training / Education

PFMEA and the Control Plan - Overview and Application

The Process FMEA and Control Plan program introduces the basic concepts behind this important tool and provides training in how to conduct an effective PFMEA. First, the course explains what a PFMEA is and how it improves the long-term performance of your products, services and related processes by addressing process related failures. The role of the PFMEA in the overall framework of Quality Management System Requirements is explained as well as the role of the PFMEA in the Advanced Product Quality Planning (APQP) process. Additionally, the differences and relationships between the DFMEA and PFMEA are well defined.
Training / Education

Safety Analyses in the Context of ISO 26262

Inductive and deductive safety analyses play an essential role within the ISO 26262 safety life cycle. Qualitative analysis methods are used to identify failures whereas quantitative methods are utilized to predict the frequency of failures. This one-day training class introduces the fundamentals of common safety analysis methods such as FMEA, FMEDA, and FTA and discusses the role of these methods in the development of safety-related E/E systems as per ISO 26262.
Training / Education

LIDAR for ADAS and Autonomous Sensing

Advanced Driver Assist System (ADAS) and autonomous vehicle technologies have disrupted the traditional automotive industry with potential to increase safety and optimize the cost of car ownership. Light detection and ranging (LIDAR) sensing, a sensing method that detects objects and maps their distances, is seeing rapid growth and adoption in the industry. However, the sensor requirements and system architecture options continue to evolve. This course will provide the foundation to build LIDAR technologies in automotive applications.
Training / Education

Infrared Camera for ADAS and Autonomous Sensing

Advanced Driver Assist System (ADAS) and autonomous vehicle technologies have disrupted the traditional automotive industry with potential to increase safety and optimize the cost of car ownership. Among the challenges are those of sensing the environment in and around the vehicle. Infrared camera sensing is seeing a rapid growth and adoption in the industry. The applications and illumination architecture options continue to evolve. This course will provide the foundation on which to build near infrared camera technologies for automotive applications.
Training / Education

Key Considerations for the Comparison of Power‐by‐Wire and Hydraulically Supplied Solutions for Aerospace Actuation

This four-hour short course provides key considerations for the comparison of electrically supplied (Power-by-Wire, or PbW) and hydraulically supplied (Power-by-Pipe, of PbP) actuation for aerospace. The focus is put on the consequence, for designers, of changing the physical principles and the technology used. A particular attention is paid to the unavoidable side effects introduced by the technological realization. Simple examples with realistic numerical values are used to make the comparisons quantitatively realistic.
Training / Education

Vehicle Dynamics for Passenger Cars and Light Trucks

2024-10-07
This course will present an introduction to vehicle dynamics from a vehicle system perspective. The theory and applications are associated with the interaction and performance balance between the powertrain, brakes, steering, suspensions and wheel and tire vehicle subsystems.  The role that vehicle dynamics can and should play in effective automotive chassis development and the information and technology flow from vehicle system to subsystem to piece-part is integrated into the presentation. Governing equations of motion are developed and solved for both steady and transient conditions.
Training / Education

Designing On-Board Diagnostics for Light and Medium Duty Emissions Control Systems

2024-09-24
On-board diagnosis of engine and transmission systems has been mandated by government regulation for light and medium vehicles since the 1996 model year. The regulations specify many of the detailed features that on-board diagnostics must exhibit. In addition, the penalties for not meeting the requirements or providing in-field remedies can be very expensive. This course is designed to provide a fundamental understanding of how and why OBD systems function and the technical features that a diagnostic should have in order to ensure compliant and successful implementation.
Training / Education

Fundamentals of Steering Systems

2024-08-13
Design and development of a modern steering system influences vehicle response to steering wheel input, driver effort, comfort, safety and fuel economy. In this interactive course participants will analyze the steering system from the road wheel to the steering wheel. Day one will begin with a deep dive into the anatomy and architecture of the lower steering system (wheel end, suspension geometry, linkages and steering gear), its effect on vehicle response and how forces and moments at the contact patch are converted to a torque at the pinion.
Training / Education

Sensors and Perception for Autonomous Vehicle Development

2024-07-08
This 4-week virtual-only experience, conducted by leading experts in the autonomous vehicle industry and academia, provides an in-depth look at the most common sensor types used in autonomous vehicle applications. By reviewing the theory, working through examples, viewing sensor data, and programming movement of a turtlebot, you will develop a solid, hands-on understanding of the common sensors and data provided by each. This course consists of asynchronous videos you will work through at your own pace throughout each week, followed by a live-online synchronous experience each Friday. The videos are led by Dr.
Training / Education

AS13100 and RM13004 Design and Process Failure Mode and Effects Analysis and Control Plans

2024-07-03
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. In the Aerospace Industry there is a focus on Defect Prevention to ensure that quality goals are met. Failure Mode and Effects Analysis (PFMEA) and Control Plan activities are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Design Failure Mode and Effects Analysis (DFMEA), Process Flow Diagrams, Process Failure Mode and Effects Analysis (PFMEA) and Control Plans as described in AS13100 and RM13004.
Training / Education

Failure Mode and Effects Analysis (FMEA)

2024-07-02
This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. This courser will introduce the latest version (2019) of Failure Mode and Effects Analysis (FMEA) Handbook with a focus on DFMEA and PFMEA building. Each column of the FMEA document will also be explained in detail with FMEA examples. The course also includes an introduction to the logic for identifying technical risks and thinking tools for risk mitigation.
Training / Education

Tire Forensics and Markings

2024-06-24
This course introduces basic tire mechanics, including tire construction components based on application type, required sidewall stamping in accordance with DoT/ECE regulations, tread patterns, regulatory and research testing on quality, tire inspections and basic tire failure identification. The course will provide you with information that you can use immediately on-the-job and apply to your own vehicle. This course is practical in nature and supplemented with samples and hands-on activities.
Training / Education

Introduction to Highly Automated Vehicles

2024-06-10
This course highlights the technologies enabling ADAS and how they integrate with existing passive occupant crash protection systems, how ADAS functions perceive the world, make decisions, and either warn drivers or actively intervene in controlling the vehicle to avoid or mitigate crashes. Examples of current and future ADAS functions, and various sensors utilized in ADAS, including their operation and limitations, and sample algorithms, will be discussed and demonstrated. The course utilizes a combination of hands-on activities, including computer simulations, discussion and lecture.
X