Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Infrared Camera for ADAS and Autonomous Sensing

Advanced Driver Assist System (ADAS) and autonomous vehicle technologies have disrupted the traditional automotive industry with potential to increase safety and optimize the cost of car ownership. Among the challenges are those of sensing the environment in and around the vehicle. Infrared camera sensing is seeing a rapid growth and adoption in the industry. The applications and illumination architecture options continue to evolve. This course will provide the foundation on which to build near infrared camera technologies for automotive applications.
Training / Education

LIDAR for ADAS and Autonomous Sensing

Advanced Driver Assist System (ADAS) and autonomous vehicle technologies have disrupted the traditional automotive industry with potential to increase safety and optimize the cost of car ownership. Light detection and ranging (LIDAR) sensing, a sensing method that detects objects and maps their distances, is seeing rapid growth and adoption in the industry. However, the sensor requirements and system architecture options continue to evolve. This course will provide the foundation to build LIDAR technologies in automotive applications.
Training / Education

Combustion and Emissions for Engineers

Public awareness regarding pollutants and their adverse health effects has created an urgent need for engineers to better understand the combustion process as well as the pollutants formed as by-products of that process. To effectively contribute to emission control strategies and design and develop emission control systems and components, a good understanding of the physical and mathematical principles of the combustion process is necessary. This course will bring issues related to combustion and emissions "down to earth," relying less on mathematical terms and more on physical explanations and analogies.
Training / Education

LIDAR and Infrared Cameras for ADAS and Autonomous Sensing

This course examines ADAS and autonomous vehicle technologies that offer the potential to increase safety while attempting to optimize the cost of car ownership. LIDAR (light detection ranging) and Infrared camera sensing are seeing a rapid growth and adoption in the industry. However, the sensor requirements and system architecture options continue to evolve almost every six months. This course will provide the foundation to build on for these two technologies in automotive applications. It will include a demonstration model for LIDAR and Infrared camera.
Training / Education

Photogrammetry and Analysis of Digital Media

2024-08-28
Photographs and video recordings of vehicle crashes and accident sites are more prevalent than ever, with dash mounted cameras, surveillance footage, and personal cell phones now ubiquitous. The information contained in these pictures and videos provide critical information to understanding how crashes occurred, and  analyze physical evidence. This course teaches the theory and techniques for getting the most out of digital media, including correctly processing raw video and photographs, correcting for lens distortion, and using photogrammetric techniques to convert the information in digital media to usable scaled three-dimensional data.
Training / Education

Exploration of Machine Learning and Neural Networks for ADAS and L4 Vehicle Perception

2024-07-18
Convolutional neural networks are the de facto method of processing camera, radar, and lidar data for use in perception in ADAS and L4 vehicles, yet their operation is a black box to many engineers. Unlike traditional rules-based approaches to coding intelligent systems, networks are trained and the internal structure created during the training process is too complex to be understood by humans, yet in operation networks are able to classify objects of interest at error rates better than rates achieved by humans viewing the same input data.
Training / Education

Photography for Accident Reconstruction, Product Liability, and Testing

2024-05-14
Many technical projects, most vehicle and component testing, and all accident reconstructions, product failure analyses, and other forensic investigations, require photographic documentation. Roadway evidence disappears, tested or wrecked vehicles are repaired, disassembled, or scrapped, and components can be tested for failure. Photographs are frequently the only evidence that remains of a wreck, or the only records of subjects before or during tests. Making consistently good images during any inspection is a critical part of the evaluation process. 
Standard

J1349 Certified Power Engine Data for Ford Expedition / Lincoln Navigator - Level 2

2008-04-10
CURRENT
CPFD2_09EXPNAV
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Standard

J1349 Certified Power Engine Data for GM LLT as used in 2010 Cadillac CTS Wagon - Level 2

2008-12-10
CURRENT
CPGM2_10CADWAG
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Collection

SI Combustion and Direct Injection SI Engine Technology, 2010

2010-06-01
The 37 papers in this technical paper collection focus on SI combustion technologies that employ direct, in-cylinder fuel injection. Topics of particular interest include in-cylinder fuel injection and spray studies, flow/spray interaction and in-cylinder mixture formation studies, and combustion chamber shape optimization. Papers also focus on combustion technologies in 4-stroke and 2-stroke engines, including premixed, port injected, and DI engine.
X