Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Effect of Injection Strategy on Cold Start Performance in an Optical Light-Duty DI Diesel Engine

2009-09-13
2009-24-0045
The present study investigates cold start at very low temperatures, down to −29 deg C. The experiments were conducted in an optical light duty diesel engine using a Swedish class 1 environmental diesel fuel. In-cylinder imaging of the natural luminescence using a high speed video camera was performed to get a better understanding of the combustion at very low temperature conditions. Combustion in cold starting conditions was found to be asymmetrically distributed in the combustion chamber. Combustion was initiated close to the glow plug first and then transported in the swirl direction to the adjacent jets. A full factorial study was performed on low temperature sensitivity for cold start. The effects of cooling down the engine by parts on stability and noise were studied. Furthermore, different injection strategies were investigated in order to overcome the limited fuel evaporation process at very low temperatures.
Journal Article

The Influence of Fuel Properties on Transient Liquid-Phase Spray Geometry and on Cl-Combustion Characteristics

2009-11-02
2009-01-2774
A transparent HSDI CI engine was used together with a high speed camera to analyze the liquid phase spray geometry of the fuel types: Swedish environmental class 1 Diesel fuel (MK1), Soy Methyl Ester (B100), n-Heptane (PRF0) and a gas-to-liquid derivate (GTL) with a distillation range similar to B100. The study of the transient liquid-phase spray propagation was performed at gas temperatures and pressures typical for start of injection conditions of a conventional HSDI CI engine. Inert gas was supplied to the transparent engine in order to avoid self-ignition at these cylinder gas conditions. Observed differences in liquid phase spray geometry were correlated to relevant fuel properties. An empirical relation was derived for predicting liquid spray cone angle and length prior to ignition.
Journal Article

Study of the Early Flame Development in a Spark-Ignited Lean Burn Four-Stroke Large Bore Gas Engine by Fuel Tracer PLIF

2014-04-01
2014-01-1330
In this work the pre- to main chamber ignition process is studied in a Wärtsilä 34SG spark-ignited lean burn four-stroke large bore optical engine (bore 340 mm) operating on natural gas. Unburnt and burnt gas regions in planar cross-sections of the combustion chamber are identified by means of planar laser induced fluorescence (PLIF) from acetone seeded to the fuel. The emerging jets from the pre-chamber, the ignition process and early flame propagation are studied. Measurements reveal the presence of a significant temporal delay between the occurrence of a pressure difference across the pre-chamber holes and the appearance of hot burnt/burning gases at the nozzle exit. Variations in the delay affect the combustion timing and duration. The combustion rate in the pre-chamber does not influence the jet propagation speed, although it still has an effect on the overall combustion duration.
Journal Article

Assessment of a New Quasi-Dimensional Multizone Combustion Model for the Spray and Soot Formation Analysis in an Optical Single Cylinder Diesel Engine

2013-09-08
2013-24-0044
An innovative quasi-dimensional multizone combustion model for the spray formation, combustion and emission formation analysis in DI diesel engines was assessed and applied to an optical single cylinder engine. The model, which has been recently presented by the authors, integrates a predictive non stationary 1D spray model developed by the Sandia National Laboratory, with a diagnostic multizone thermodynamic model. The 1D spray model is capable of predicting the equivalence ratio of the fuel during the mixing process, as well as the spray penetration. The multizone approach is based on the application of the mass and energy conservation laws to several homogeneous zones identified in the combustion chamber. A specific submodel is also implemented to simulate the dilution of the burned gases. Soot formation is modeled by an expression which derives from Kitamura et al.'s results, in which an explicit dependence on the local equivalence ratio is considered.
Technical Paper

Modeling Study of the Battery Pack for the Electric Conversion of a Commercial Vehicle

2021-09-05
2021-24-0112
Many aspects of battery electric vehicles are very challenging from the engineering point of view in terms of safety, weight, range, and drivability. Commercial vehicle engines are often subjected to high loads even at low speeds and this can lead to an intense increment of the battery pack temperature and stress of the cooling system. For these reasons the optimal design of the battery pack and the relative cooling system is essential. The present study deals with the challenge of designing a battery pack that satisfies both the conditions of lowest weight and efficient temperature control. The trade-off between the battery pack size and the electrical stress on the cells is considered. The electric system has the aim to substitute a 3.0 liters compression ignition engine mainly for commercial vehicles.
Technical Paper

Combined CFD - Experimental Analysis of the In-Cylinder Combustion Phenomena in a Dual Fuel Optical Compression Ignition Engine

2021-09-05
2021-24-0012
Methane supply in diesel engines operating in dual fuel mode has demonstrated to be effective for the reduction of particulate matter and nitric oxides emissions from this type of engine. In particular, methane is injected into the intake manifold to form a premixed charge with air, while a reduced amount of diesel oil is still directly injected to ignite the mixture inside the cylinder. As a matter of fact, the liquid fuel burns following the usual diffusive combustion, so activating the gaseous fuel oxidation in a premixed flame. Clearly, the whole combustion process appears to be more complex to be described in a CFD simulation, mainly because it is not always possible to select in the 3-dimensional codes a different combustion model for each fuel and, also, because other issues arise from the interaction of the two fuels.
Technical Paper

Infrared Diagnostics of a Li-Polymer Battery for the Estimation of the Surface Temperature Distribution and the Heat Transfer Parameters

2020-09-15
2020-01-2026
A growing number of electric vehicles (EV) and hybrid electric vehicles (HEV) in the present market depicts the rapid growing demand for energy storage systems. The battery’s main peculiarities must be the power density and reliability over time. The temperature strongly affects battery performance for low and high intensity. In particular, the management of the heat generated by the battery itself is one of the main aspects to handle to preserve the performance over time. The objective of this paper is to compare the surface temperature of the lithium-ion polymer battery at different discharging rates by infrared thermography. Thermal imaging is performed to detect the battery surface temperature distribution, focusing on its variation over time and the local inhomogeneity. Temperature measurements are then used to estimate the contributions of the different heat transfer mechanisms for the dissipation of the heat generated by the battery.
Technical Paper

Optical Characterization of Methanol Sprays and Mixture Formation in a Compression-Ignition Heavy-Duty Engine

2020-09-15
2020-01-2109
Methanol is not a fuel typically used in compression ignition engines due to the high resistance to auto-ignition. However, conventional diesel combustion and PPC offer high engine efficiency along with low HC and CO emissions, albeit with the trade-off of increased NOx and PM emissions. This trade-off balance is mitigated in the case of methanol and other alcohol fuels, as they bring oxygen in the combustion chamber. Thus methanol compression ignition holds the potential for a clean and effective alternative fuel proposition. Most existing research on methanol is on SI engines and very little exists in the literature regarding methanol auto-ignition engine concepts. In this study, the spray characteristics of methanol inside the optically accessible cylinder of a DI-HD engine are investigated. The liquid penetration length at various injection timings is documented, ranging from typical PPC range down to conventional diesel combustion.
Journal Article

Using 2d Infrared Imaging for the Analysis of Non-Conventional Fuels Combustion in a Diesel Engine

2015-04-14
2015-01-1646
The common realization of the necessity to reduce the use of mineral sources is promoting the use of alternative fuels. Big efforts are being made to replace petroleum derivatives in the internal combustion engines (ICEs). For this purpose it is mandatory to evaluate the behavior of non-conventional fuels in the ICEs. The optical diagnostics have proven to be a powerful tool to analyze the processes that take place inside the engine. In particular, 2d imaging in the infrared range can reveal new details about the effect of the fuel properties since this technique is still not very common. In this work, a comparison between commercial diesel fuel and two non-conventional fuels has been made in an optically accessible diesel engine. The non-conventional fuels are: the first generation biofuel Rapeseed Methyl Ester (RME) and an experimental blend of diesel and a fuel with high glycerol content (HG).
Journal Article

Spray and Soot Formation Analysis by Means of a Quasi-Dimensional Multizone Model in a Single Cylinder Diesel Engine under Euro 4 Operating Conditions

2015-09-06
2015-24-2416
An investigation has been carried out on the spray penetration and soot formation processes in a research diesel engine by means of a quasi-dimensional multizone combustion model. The model integrates a predictive non stationary 1D spray model developed by the Sandia National Laboratory, with a diagnostic multizone thermodynamic model, and is capable of predicting the spray formation, combustion and soot formation processes in the combustion chamber. The multizone model was used to analyze three operating conditions, i.e., a zero load point (BMEP = 0 bar at 1000 rpm), a medium load point (BMEP = 5 bar at 2000 rpm) and a medium-high load point (BMEP = 10 bar at 2000 rpm). These conditions were experimentally tested in an optical single cylinder engine with the combustion system configuration of a 2.0L Euro4 GM diesel engine for passenger car applications.
Journal Article

Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments

2015-09-01
2015-01-1991
The major challenge of the post-processing of soot aggregates in transmission electron microscope (TEM) images is the detection of soot primary particles that have no clear boundaries, vary in size within the fractal aggregates, and often overlap with each other. In this study, we propose an automated detection code for primary particles implementing the Canny Edge Detection (CED) and Circular Hough Transform (CHT) on pre-processed TEM images for particle edge enhancement using unsharp filtering as well as image inversion and self-subtraction. The particle detection code is tested for soot TEM images obtained at various ambient and injection conditions, and from five different combustion facilities including three constant-volume combustion chambers and two diesel engines.
Journal Article

Transition from HCCI to PPC: Investigation of Fuel Distribution by Planar Laser Induced Fluorescence (PLIF)

2017-03-28
2017-01-0748
In a previous study, in order to investigate the effect of charge stratification on combustion behavior such as combustion efficiency and combustion phasing which also largely affects the emissions, an experiment was conducted in a heavy-duty compression ignition (CI) metal engine. The engine behavior and emission characteristics were studied in the transition from HCCI mode to PPC mode by varying the start of injection (SOI) timing. To gain more detailed information of the mixing process, in-cylinder laser diagnostic measurements, namely fuel-tracer planar laser induced fluorescence (PLIF) imaging, were conducted in an optical version of the heavy-duty CI engine mentioned above. To the authors’ best knowledge, this is the first time to perform fuel-tracer PLIF measurements in an optical engine with a close to production bowl in piston combustion chamber, under transition conditions from HCCI to PPC mode.
Journal Article

UV-Visible Spectroscopic Measurements of Dual-Fuel PCCI Engine

2011-09-11
2011-24-0061
In this work, optical diagnostics were applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat bio-ethanol was performed in the intake manifold and European commercial diesel fuel was injected into the cylinder. Different amounts of bio-ethanol were injected in order to create PCCI combustion with high levels of pre-combustion mixing, and to ensure low equivalence ratio and low flame temperatures too. UV-Visible imaging and spectroscopic measurements were performed in the engine in order to investigate the autoignition of the charge and the combustion process, respectively. In particular, the detection of the species involved in the combustion, like OH, HCO, and CH, was performed. The relevance of the radicals and species on PCCI were evaluated and compared with the data from thermodynamic analysis.
Journal Article

Diesel Spray Ignition Detection and Spatial/Temporal Correction

2012-04-16
2012-01-1239
Methods for detection of the spatial position and timing of diesel ignition with improved accuracy are demonstrated in an optically accessible constant-volume chamber at engine-like pressure and temperature conditions. High-speed pressure measurement using multiple transducers, followed by triangulation correction for the speed of the pressure wave, permits identification of the autoignition spatial location and timing. Simultaneously, high-speed Schlieren and broadband chemiluminescence imaging provides validation of the pressure-based triangulation technique. The combined optical imaging and corrected pressure measurement techniques offer improved understanding of diesel ignition phenomenon. Schlieren imaging shows the onset of low-temperature (first-stage) heat release prior to high-temperature (second-stage) ignition. High-temperature ignition is marked by more rapid pressure rise and broadband chemiluminescence.
Journal Article

Non-Intrusive Investigation in a Small GDI Optical Engine Fuelled with Gasoline and Ethanol

2011-04-12
2011-01-0140
The aim of this paper is the experimental investigation of the effect of direct fuel injection on the combustion process and pollutant formation in a spark ignition (SI) two-wheel engine. The engine is a 250cc single cylinder, four-stroke spark-ignition firstly equipped with a four-valve PFI head and then with GDI one operating with European commercial gasoline and Bio-ethanol. It is equipped with a wide sapphire window in the bottom of the chamber and quartz cylinder. In the combustion chamber, optical techniques based on 2D-digital imaging were used to follow the injection and flame propagation and spectroscopic measurements were carried out in order to evaluate the main radical species. Radical species such as OH and CH were detected and used to follow the chemical phenomena related to the fuel quality. Measurements were carried out at different engine speeds and combustion strategies based on different injection pressures.
Journal Article

Characterization of CH4 and CH4/H2 Mixtures Combustion in a Small Displacement Optical Engine

2013-04-08
2013-01-0852
In the last years, even more attention was paid to the alternative fuels which can allow both reducing the fuel consumption and the pollutant emissions. Among gaseous fuels, methane is considered one of the most interesting in terms of engine application. It represents an immediate advantage over other hydrocarbon fuels leading to lower CO₂ emissions; if compared to gasoline, CH₄ has wider flammable limits and better anti-knock properties, but lower flame speed. The addition of H₂ to CH₄ can improve the already good qualities of methane and compensate its weak points. In this paper a comparison was carried out between CH₄ and different CH₄/H₂ mixtures. The measurements were carried out in an optically accessible small single-cylinder, Port Fuel Injection spark ignition (PFI SI), four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc motorcycle engine representative of the most popular two-wheel vehicles in Europe.
Journal Article

Full-Cycle CFD Modeling of Air/Fuel Mixing Process in an Optically Accessible GDI Engine

2013-09-08
2013-24-0024
This paper is focused on the development and application of a CFD methodology that can be applied to predict the fuel-air mixing process in stratified charge, sparkignition engines. The Eulerian-Lagrangian approach was used to model the spray evolution together with a liquid film model that properly takes into account its effects on the fuel-air mixing process into account. However, numerical simulation of stratified combustion in SI engines is a very challenging task for CFD modeling, due to the complex interaction of different physical phenomena involving turbulent, reacting and multiphase flows evolving inside a moving geometry. Hence, for a proper assessment of the different sub-models involved a detailed set of experimental optical data is required. To this end, a large experimental database was built by the authors.
Journal Article

Experimental and Numerical Investigation in a Turbocharged GDI Engine Under Knock Condition by Means of Conventional and Non-Conventional Methods

2015-04-14
2015-01-0397
The present paper deals with a comprehensive analysis of the knocking phenomenon through experiments and numerical simulations. Conventional and non-conventional measurements are performed on a 4-stroke, 4-cylinder, turbocharged GDI engine. The engine exhibits optical accesses to the combustion chamber. Imaging in the UV-visible range is carried out by means of a high spatial and temporal resolution camera through an endoscopic system and a transparent window in the piston head. This last is modified to allow the view of the whole combustion chamber almost until the cylinder walls, to include the so-called eng-gas zones. Optical data are correlated to in-cylinder pressure-based indicated analyses in a cycle resolved approach.
Journal Article

Characterization of Knock Tendency and Onset in a GDI Engine by Means of Conventional Measurements and a Non-Conventional Flame Dynamics Optical Analysis

2017-09-04
2017-24-0099
Gasoline direct injection (GDI) allows knock tendency reduction in spark-ignition engines mainly due to the cooling effect of the in-cylinder fuel evaporation. However, the charge formation and thus the injection timing and strategies deeply affect the flame propagation and consequently the knock occurrence probability and intensity. In particular, split injection allows a reduction of knock intensity by inducing different AFR gradient and turbulent energy distribution. Present work investigates the tendency to knock of a GDI engine at 1500 rpm full load under different injection strategies, single and double injections, obtained delivering the same amount of gasoline in two equal parts, the first during intake, the second during compression stroke. In these conditions, conventional and non-conventional measurements are performed on a 4-stroke, 4-cylinder, turbocharged GDI engine endowed of optical accesses to the combustion chamber.
Technical Paper

Analysis of the Combustion Process of SI Engines Equipped with Non-Conventional Ignition System Architecture

2020-06-30
2020-37-0035
The use of lean or ultra-lean ratios is an efficient and proven strategy to reduce fuel consumption and pollutant emissions. However, the lower fuel concentration in the cylinder hinders the mixture ignition, requiring greater energy to start the combustion. The prechamber is an efficient method to provide high energy favoring the ignition process. It presents the potential to reduce the emission levels and the fuel consumption, operating with lean burn mixtures and expressive combustion stability. In this paper the analysis of the combustion process of SI engines equipped with an innovative architecture and operating in different injection modes was described. In particular, the effect of the prechamber ignition on the engine stability and the efficiency was investigated in stoichiometric and lean-burn operation conditions. The activity was carried out in two parts.
X