Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Experimental Investigation of Factors Affecting Odors Generating from Mobile AC Systems Equipped with Idling-Time Reduction Systems

2015-04-14
2015-01-0359
In last 10 years or so, a number of OEMs are designing vehicles with start-stop function to save energy and to reduce pollution. For these systems, the situations in which air-conditioning systems are used have been changing with a significant increase in adoption of idle-time reduction systems (no idling-system). Blower fan remains operating at idle condition while compressor stops in most cases for these systems. In this case, the air temperature at the vent outlets increases. The increase in the air temperature under range of thermal boundary conditions around the evaporator causes a concern of odor to occur. This paper describes and explains experimental studies on changes in heat and humidity at the air outlets according to the switching operation of compressor and root cause analyses of odor coming from air-conditioning system for vehicles with start-stop function.
Journal Article

Experimental Determination of Effectiveness of Hydrophilic Coating for Evaporators

2016-04-05
2016-01-0191
Water drainage characteristics of an evaporator changes with the age of the vehicle. This is due to the fact that with time, a part of the hydrophilic coating washes off with the moisture that condenses over the evaporator core from the air-stream. Hence, the effectiveness of the evaporator for water drainage deteriorates with the age of the vehicle. At this condition more water is retained in the evaporator as the contact angle increases. Author has conducted experiments with evaporators from multiple vehicles from different OEMs. These evaporators were analyzed to determine the effectiveness of the hydrophilic coating as a function of time or vehicle age. This is the first paper in the open literature that deals with the vehicle mileage or vehicle age with the evaporator plate contact angle and surface coating of an evaporator.
Journal Article

Analysis of the Effectiveness of Evaporator’s Hydrophilic Coating of Cores Recovered from Humid and Arid Regions

2017-03-28
2017-01-0122
Water drainage characteristics are dependent on the design of the evaporator: specifically the design of the fins and plates along with hydrophilic coating. A part of the hydrophilic coating washes off with the moisture that condenses over the evaporator core from the air-stream. Hence, water drainage characteristics of an evaporator changes with the vehicle mileage or the age of the vehicle. Since a part of the hydrophilic coating washes away, more water is retained within the evaporator at this condition. Hence, the effectiveness of the evaporator drainage deteriorates with the age of the vehicles. At this condition, the contact angle measured at the plate increases. Author has conducted an experimental study to measure the effectiveness of hydrophilic coating from evaporators taken out from arid (9 cores) and humid areas (16 cores) as a function of vehicle mileage or vehicle age. Contact angles and water retention were measured for a number of evaporators from different OEMs.
Technical Paper

Evaluation of Thermal Environment in Vehicles for Occupant Comfort Using Equivalent Temperature of Thermal Manikin during Start-Stop Function with Energy Storage Evaporators

2018-04-03
2018-01-0059
In recent years, start-stop systems have been implemented by many OEMs for improvement of fuel economy. When the engine stops, the occupant comfort typically deteriorates. Hence, the climate and fuel economy engineers are struggling to combine the passenger comfort and fuel economy. Especially in a vehicle cabin where the thermal environment becomes unsteady and highly non-uniform due to a start-stop. It is difficult to adapt any comfort evaluation index that have already been well established for a stationary/uniform space in building type environment in comparison to a vehicle cabin interior. The existing standard of ISO-14505-2 does not consider this for vehicle cabin interior condition. Hence, the authors have developed the occupant’s comfort prediction method under highly non-uniform condition and unsteady conditions and have established a new methodology [1].
Technical Paper

Development of an Innovative Energy Efficient Compact Cooling System “SLIM”

2012-04-16
2012-01-1201
To improve fuel consumption, hybrid system, turbo-charged engine, and clean diesel engine vehicles have been developed. These new systems require additional heat exchangers which reduces air flow rate within the heat exchangers of an engine cooling module. Consequently, power of cooling fan is increased. CalsonicKansei (CK) has developed a new cooling module “SLIM” (Single Layer Integrated cooling Module). This consists of a current condenser which is air-cooled and a new water-cooled condenser. This water cooled condenser is specifically designed to bring superheated refrigerant vapor to saturated conditions. The water-cooled condenser is located inside of the sub-radiator tank. The operation of the sub-radiator is to provide cooling to charge air cooler (CAC) and to water-cooled condenser. The switch of the operation is done automatically without any valve and any actuator.
Technical Paper

Performance Enhancement of Mobile Air Conditioning System With Improved Air Management for Front End

2005-04-11
2005-01-1512
The current investigation is focused on enhancing the mobile air conditioning performance by improving the air management for the front end. The following enhancing strategies were investigated: air guides, seals between the condenser and radiator and the seals on the hood. The following are the major conclusions from this study: A study of 12 current production vehicles revealed that the majority of the vehicles did not have good front end designs for optimum performance. Significant amount of air bypasses the condenser and radiator in the current production vehicles that has a major impact on the performance of the air conditioning and engine cooling systems. For a typical current production vehicle 15% bypassed the condenser; 24% bypassed the radiator; and 9% bypassed between the condenser and the radiator. This is the first paper in the literature that presents this information.
Technical Paper

Influence of Cowl Surface Temperature On Air Conditioning Load

2005-05-10
2005-01-2058
The current investigation focuses on the heat pick up by the air as it flows into the cowl from one end to the blower unit intake. Tests were conducted on a number of current production vehicles. The following are the major conclusions from this study: 1 A study of 8 current production vehicles revealed that the cowl surface were significantly heated resulting in an increased air temperature as it flows into the blower intake through the cowl. 2 Based on the wind tunnel data, the sheet metal cowl channel is heated up to 50∼63 °C at highway speeds and up to 85 °C at idle. 3 Hence, in OSA mode the ambient air is heated up by the hot channel surface as it travels from the cowl inlet to the blower unit that result in increasing the evaporator loads by significant levels, thereby, increasing the vent outlet temperature. 4 Tests were conducted by removing the cowl cover to determine the maximum potential of improvements (to prevent air from being heated up in the cowl channel).
Technical Paper

Water Carryover Characteristics From Evaporator Coils During Transitional Airflows

2000-03-06
2000-01-1268
In this paper, the results from an experimental investigation to determine the water carryover characteristics from the evaporator coil during transitional airflows is presented. The tests were conducted at the following transitional operating conditions: blower speed low to medium; and blower speed low to high. For both of these tests the system operated at low blower speed for an extended period of operation before switching to either medium or high speeds. A laminate (plate type) evaporator with louvered fins with hydrophilic coating was used for this investigation. Tests were also conducted with a screen at the downstream face of the core to prevent water carryover. This test was conducted for the worst case scenario, i.e., when the blower speed was increased to high from an extended period of operation at low speed.
Technical Paper

Investigation of Water Carryover From Evaporator Coils

1999-03-01
1999-01-1194
In this paper a methodology is presented to predict the water drop trajectories at a given fan operating condition (i.e., face velocity), coil height and for a range of water drop diameters. Water drop carry over horizontal distances have been calculated as a function of evaporator coil height, water drop diameters, and face velocities for an evaporator unit. The simulated data has been compared with the experimental data. Initial results have shown that the model can predict the water drop trajectories fairly well. The developed model can be used to calculate the maximum horizontal distances the water drops will be carried over with the airstream for a range of water drop diameters. This is very important information to the design engineers for properly designing the evaporator units.
Technical Paper

Psychrometric Analysis of the Effect of Laminate Evaporator's Tank Position

2003-03-03
2003-01-0528
In this paper, the psychrometric analysis of the effect of laminate evaporator's tank position is presented. Essentially, water flyout characteristics, core surface temperature, and air resistance of a laminate evaporator is experimentally studied as a function of the tank position (either at top or at bottom) by maintaining the same operating test conditions. The tests were conducted when the blower speed was changed from low to medium; and low to high. For these tests, the system operated at low blower speed for an extended period of time before switching to either medium or high speeds. A four-pass laminate (plate type) evaporator with louvered fins with hydrophilic coating was used for this investigation. This study reveals that the tank position has a significant impact on the water flyout characteristics, evaporator core surface temperature, and air resistance.
Book

Vehicle Thermal Management

2004-04-08
The efficiency of thermal systems (HVAC, engine cooling, transmission, and power steering) has improved greatly over the past few years. Operating these systems typically requires a significant amount of energy, however, which could adversely affect vehicle performance. To provide customers the level of comfort that they demand in an energy-efficient manner, innovative approaches must be developed.
X