Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Simulation of Class 8 Truck Cooling System: Comparison to Experiment under Different Engine Operation Conditions

2007-10-29
2007-01-4111
More stringent heavy vehicle emissions legislation demands considerably higher performance for engine cooling systems. This paper presents a study of cooling airflow for a Freightliner Class 8 truck. The predicted radiator coolant inlet and charge-air-cooler outlet temperatures are in very good agreement with the measured data. The under hood flow behavior is described and potential areas of improvement leading to better cooling airflow performance are highlighted. The airflow simulation approach is based on the Lattice-Boltzmann Method (LBM) and is described in detail. It is shown that the presented simulation approach can provide accurate predictions of cooling airflow and coolant temperature across different fan speeds.
Technical Paper

Under-hood Thermal Simulation of a Class 8 Truck

2007-10-30
2007-01-4280
A validation study was performed comparing the simulation results of the Lattice-Boltzmann Equation (LBE) based flow solver, PowerFLOW®, to cooling cell measurements conducted at Volvo Trucks North America (VTNA). The experimental conditions were reproduced in the simulations including dynamometer cell geometry, fully detailed under-hood, and external tractor geometry. Interactions between the air flow and heat exchangers were modeled through a coupled simulation with the 1D-tool, PowerCOOL™, to solve for engine coolant and charge air temperatures. Predicted temperatures at the entry and exit plane of the radiator and charge-air-cooler were compared to thermocouple measurements. In addition, a detailed flow analysis was performed to highlight regions of fan shroud loss and cooling airflow recirculation. This information was then used to improve cooling performance in a knowledge-based incremental design process.
Technical Paper

Aerodynamic Simulations of a Class 8 Heavy Truck: Comparison to Wind Tunnel Results and Investigation of Blockage Influences

2007-10-30
2007-01-4295
The accuracy of the Lattice-Boltzmann based simulation method for prediction of aerodynamic drag on a heavy truck was evaluated by comparing results to twenty percent scale model wind tunnel measurements from the University of Washington Aeronautical Laboratory (UWAL). A detailed preproduction Kenworth T2000 tractor trailer was used as the scale model. The results include a comparison of normalized drag between simulation and wind tunnel as well as percentage drag change with the addition of a radius to the rear edge of the trailer. Significant effort was involved to model all of the wind tunnel details affecting the tractor-trailer drag. These are discussed along with the results of additional simulations which were performed to study the impact of the UWAL tunnel geometry relative to a tunnel with the same blockage and constant cross-sectional area, and a case with negligible blockage.
Technical Paper

Simulation of Cooling Airflow under Different Driving Conditions

2007-04-16
2007-01-0766
Presented are simulations of cooling airflow and external aerodynamics over Land Rover LR3 and Ford Mondeo cars under several driving conditions. The simulations include details of the external flow field together with the flow in the under-hood and underbody areas. Shown is the comparison between the predicted and measured coolant inlet temperature in the radiator, drag and lift coefficients, temperature distribution on the radiator front face, and wake total pressure distribution. Very good agreement is observed. In addition, shown is the complex evolution of the temperature field in the idle case with strong under-hood recirculation. It is shown that the presented Lattice-Boltzmann Method based approach can provide accurate predictions of both cooling airflow and external aerodynamics.
Technical Paper

Aerodynamic Simulations of a Generic Tractor-Trailer: Validation and Analysis of Unsteady Aerodynamics

2008-10-07
2008-01-2612
Aerodynamic simulations of a 1:8-scale simplified tractor-trailer, designated as the Generic Conventional Model (GCM), were conducted using a Lattice-Boltzmann based solver. Comparisons were made to experimental measurements from the NASA Ames 12-Foot Pressure Wind Tunnel, including drag coefficients as a function of yaw, static and transient surface pressures, and three-component particle image velocimetry. The baseline model configuration was tested at yaw angles from 0 to 12 degrees, allowing the calculation of the wind-averaged drag coefficient. Results demonstrated that the simulation predicted body-axis drag within experimental uncertainty and also resolved the correct pressure distribution and flow structure in the separated flow regions including the tractor-trailer gap and trailer wake regions. The comparison of the experimental transient pressure spectra showed good agreement with the simulation results, both in magnitude and identification of dominant spectral peaks.
Technical Paper

Long Term Transient Cooling of Heavy Vehicle Cabin Compartments

2010-10-05
2010-01-2018
A newly developed simulation methodology for a long term, transient tractor cabin cool-down is presented in this paper. The air flow was simulated using a Lattice-Boltzmann Equation (LBE) based 3-dimensional flow solver. The conduction and radiation effects on the solid parts as well as the average cabin air temperature evolution were solved by the thermal solver, which also includes a human comfort model. The simulation results were compared with the measured experimental test data and good agreement was observed validating the developed simulation approach. The developed methodology can be applied to all other ground vehicles cabin comfort applications.
Technical Paper

Cooling Airflow Simulation for Passenger Cars using Detailed Underhood Geometry

2006-10-31
2006-01-3478
Air flow in the underhood area is the primary source of engine cooling. A quick look at the vehicle underhood reveals exceptionally complex geometry. In addition to the engine, there are fans, radiator, condenser, other heat exchangers and components. The air flow needs to have adequate access to all relevant parts that require cooling. Due to complex geometry, the task to ensure sufficient air cooling is not a simple one. The air flow entering from the front grille is affected by many components on its path through the underhood. Even small geometry details affect the flow direction and can easily cause recirculation regions which reduce the cooling efficiency. Therefore, air cooling flow analysis requires detailed treatment of the underhood geometry and at the same time accurate air flow modeling. Recent advances in the lattice-Boltzmann equation (LBE) modeling are allowing both.
X