Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

2009-07-12
2009-01-2371
The Space Suit Water Membrane Evaporator (SWME) is a baseline heat rejection technology that was selected to develop the Constellation Program lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element Portable Life Support Subsystem to provide cooling to the thermal loop via water evaporation to the vacuum of space. Previous work [1] described the test methodology and planning that are entailed in comparing the test performance of three commercially available HoFi materials as alternatives to the sheet membrane prototype for SWME: (1) porous hydrophobic polypropylene, (2) porous hydrophobic polysulfone, and (3) ion exchange through nonporous hydrophilic-modified Nafion®.
Journal Article

A Freezable Heat Exchanger for Space Suit Radiator Systems

2008-06-29
2008-01-2111
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment, the load from the electrical components and incident radiation. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus simple and highly reliable. However, past freezable radiators have been too heavy.
Technical Paper

Space Suit Radiator Performance in Lunar and Mars Environments

2007-07-09
2007-01-3275
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Last year we reported on the design and initial operational assessment tests of a novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X).
Technical Paper

Potential of a New Lunar Surface Radiator Concept for Hot Lunar Thermal Environments

2008-06-29
2008-01-1960
The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft's vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed ~325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided.
Technical Paper

Spacesuit Water Membrane Evaporator Development for Lunar Missions

2008-06-29
2008-01-2114
For future lunar extra-vehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon® membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using the Teflon® membrane was tested successfully by Ungar and Thomas (2001) with predicted performance matching test data well [1]. The above referenced work laid the foundation for the design of the SWME development unit, which is being considered for service in the Constellation System Spacesuit Element (CSSE) Portable Life Support System (PLSS). Multiple PLSS SWME configurations were considered on the basis of thermal performance, mass, volume, and performance and manufacturing risk. All configurations were a variation of an alternating concentric water and vapor channel configuration or a stack of alternating rectangular water and vapor channels.
Technical Paper

Lightweight, Flexible, and Freezable Heat Pump/Radiator for EVA Suits

2008-06-29
2008-01-2112
We have completed preliminary tests that show the feasibility of an innovative concept for a spacesuit thermal control system using a lightweight, flexible heat pump/radiator. The heat pump/radiator is part of a regenerable LiCI/water absorption cooling device that absorbs an astronaut's metabolic heat and rejects it to the environment via thermal radiation at a relatively high temperature. We identified key design specifications for the system, demonstrated that it is feasible to fabricate the flexible radiator, measured the heat rejection capability of the radiator, and assessed the effects on overall mass of the PLSS. We specified system design features that will enable the flexible absorber/radiator to operate in a wide range of space exploration environments. The materials used to fabricate the flexible absorber/radiator samples were all found to be low off-gassing and many have already been qualified for use in space.
Technical Paper

A Test Plan for Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

2008-06-29
2008-01-2113
The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source.
Technical Paper

Thermal Conductivity of Lofty Nonwovens in Space and Planetary Vacuum Environment

2001-07-09
2001-01-2166
For planetary exploration, new thermal insulation materials are needed to deal with unique environmental conditions presented to extravehicular activity (EVA). The thermal insulation material and system used in the existing space suit were specifically designed for low orbit environment. They are not adequate for low vacuum condition commonly found in planetary environments with a gas atmosphere. This study attempts to identify the types of lofty nonwoven thermal insulation materials and the construction parameters that yield the best performance for such application. Lofty nonwovens with different construction parameters are evaluated for their thermal conductivity performance. Three different types of fiber material: solid round fiber, hollow fiber, and grooved fiber, with various denier, needling intensity, and web density were evaluated.
Technical Paper

Lunar EVA Thermal Environment Challenges

2006-07-17
2006-01-2231
With new direction to return to the Moon, NASA is developing highly efficient and lightweight extravehicular activity (EVA) equipment for working on the rugged lunar terrain. This paper presents results and evaluations of lunar thermal environments and design challenges for the EVA system. The evaluations include a review of basic lunar environment data, a review of metabolic rate predictions, analyses and reviews of spacesuit heat leak effects in past designs, and methods to improve the performance of spacesuit-mounted radiators in a hot lunar environment. In addition to reviewing existing lunar thermal environment data, a simplified thermal model is presented that can simulate the lunar surface temperature variation as a function of latitude and time on the lunar surface. The assumed physical and optical properties of the lunar soil as well as the solar heating on the Earth's Moon are also presented.
Technical Paper

First Lunar Outpost Extravehicular Life Support System Evaluation

1993-07-01
932188
A preliminary evaluation of several portable life support system (PLSS) concepts which could be used during the First Lunar Outpost (FLO) mission extravehicular activities (EVA's) has been performed. The weight, volume and consumables characteristics for the various PLSS concepts were estimated. Thermal effects of day and night EVA's on PLSS consumables usage and hardware requirements were evaluated. The benefit of adding a radiator and the total PLSS weight to be carried by the astronaut were also evaluated for each of the concepts. The results of the evaluation were used to provide baseline weight, volume and consumables characteristics of the PLSS to be used on the 45 day FLO mission. The benefit of radiators was shown to be substantial. Considerable consumables savings were predicted for EVA schedules with a high concentration of nighttime EVA's versus daytime EVA's.
Technical Paper

EVA Results of Shuttle Mission STS-37

1992-07-01
921339
The National Aeronautics and Space Administration (NASA) has accomplished a “return to extravehicular activity (EVA)” on the Space Transportation System 37 (STS-37) mission that flew in April 1991. This first U.S. EVA in almost 6 years included both an unscheduled EVA on mission day 3 and a scheduled EVA on mission day 4. The unscheduled EVA occurred when the high-gain antenna on the Compton Gamma Ray Observatory (GRO) would not deploy when commanded from the ground. Mission specialists Jerry Ross and Jay Apt quickly donned their space suits, went into the Shuttle cargo bay for EVA, and freed the jammed antenna, saving the $617 million scientific spacecraft. During the scheduled EVA, crewmembers Ross and Apt successfully completed the Space Station Freedom (SSF) EVA Development Flight Experiment (EDFE). EDFE evaluated three classes of equipment planned for SSF: Crew and Equipment Translation Aids (CETA), Crew Loads Instrumented Pallet (CLIP), and EVA Translation Evaluation (ETE).
Technical Paper

A Nonventing Cooling System for Space Environment Extravehicular Activity, Using Radiation and Regenerable Thermal Storage

1988-07-01
881063
This paper outlines the selection, design, and testing of a prototype nonventing regenerable astronaut cooling system for Extravehicular Activity (EVA) space suit applications, for mission durations of four hours or greater. The selected system consists of the following key elements: a radiator assembly which serves as the exterior shell of the portable life support subsystem (PLSS) backpack; a layer of phase change thermal storage material, n-hexadecane paraffin, which acts as a regenerable thermal capacitor; a thermoelectric heat pump; and an automatic temperature control system. The capability for regeneration of thermal storage capacity with and without the aid of electric power is provided.
Technical Paper

Advanced Space Suit Insulation Feasibility Study

2000-07-10
2000-01-2479
For planetary applications, the space suit insulation has unique requirements because it must perform in a dynamic mode to protect humans in the harsh dust, pressure and temperature environments. Since the presence of a gaseous planetary atmosphere adds significant thermal conductance to the suit insulation, the current multi-layer flexible insulation designed for vacuum applications is not suitable in reduced pressure planetary environments such as that of Mars. Therefore a feasibility study has been conducted at NASA to identify the most promising insulation concepts that can be developed to provide an acceptable suit insulation. Insulation concepts surveyed include foams, microspheres, microfibers, and vacuum jackets. The feasibility study includes a literature survey of potential concepts, an evaluation of test results for initial insulation concepts, and a development philosophy to be pursued as a result of the initial testing and conceptual surveys.
X