Refine Your Search

Topic

Search Results

Journal Article

Influence of Cold Start and Ambient Temperatures on Greenhouse Gas (GHG) Emissions, Global Warming Potential (GWP) and Fuel Economy for SI Car Real World Driving

2010-04-12
2010-01-0477
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport using a probe vehicle: CO₂, N₂O and CH₄ emissions as a function of cold start and ambient temperatures. A real-world driving cycle has been developed at Leeds and referred as LU-BS, which has an urban free flow driving pattern. The test vehicle was driven on the same route by the same driver on different days with different ambient temperatures. All the journeys were started from cold. An in-vehicle FTIR emission measurement system was installed on a EURO2 emission compliance SI car for emissions measurement at a rate of 0.5 Hz. This emission measurement system was calibrated on a standard CVS measurement system and showed an excellent agreement on the CO₂ measurement with the CVS results. The N₂O and CH₄ were calibrated by calibration gas bottles.
Journal Article

VOC Emissions and OFP Assessment for Two Real World Urban Driving Cycles using a EURO 2 SI Car

2008-04-14
2008-01-1303
A FTIR in-vehicle on-road emission measurement system was installed in a EURO2 emissions compliant SI (Spark Ignition) car to investigate exhaust Volatile Organic Compounds (VOC) emissions and Ozone Formation Potential (OFP) under different urban traffic conditions. The real time fuel consumption and vehicle traveling speed were measured and logged. The temperatures were measured along the exhaust pipe so as to monitor the thermal characteristics and efficiency of the catalyst. Two real world driving cycles were developed with different traffic conditions. One (West Park Loop cycle) was located in a quiet area with few traffic interference and the other one (Hyde Park Loop cycle) was in a busy area with more traffic variations. The test car was pre-warmed before each test to eliminate cold start effect. The driving parameters were analyzed for two real world cycles.
Technical Paper

Analysis of Driving Parameters and Emissions for Real World Urban Driving Cycles using an on-board Measurement Method for a EURO 2 SI car

2007-07-23
2007-01-2066
A FTIR in-vehicle on-road emission measurement system was installed in a EURO 2 emissions compliant SI car to investigate exhaust emissions under different urban traffic conditions. The real time fuel consumption and vehicle traveling speed was measured and logged. The temperatures were measured along the exhaust pipe so as to monitor the thermal characteristics and efficiency of the catalyst. Two real world driving cycles were developed with different traffic conditions. One (WP cycle) was located in a quiet area with few traffic interference and the other one (HPL cycle) was in a busy area with more traffic variations. The test car was pre-warmed before each test to eliminate cold start effect. The driving parameters were analyzed for two real world cycles. The WP cycle had higher acceleration rate, longer acceleration mode and shorter steady speed driving mode and thus harsher than the HPL cycle.
Technical Paper

The Use of a Water/Lube Oil Heat Exchanger and Enhanced Cooling Water Heating to Increase Water and Lube Oil Heating Rates in Passenger Cars for Reduced Fuel Consumption and CO2 Emissions During Cold Start.

2007-07-23
2007-01-2067
Lubricating oil takes all of the NEDC test cycle time to reach 90°C. Hence, this gives high friction losses throughout the test cycle, which leads to a significant increase in the fuel consumption. In real world driving, particularly in congested traffic, it is shown that lube oil warm-up is even slower than in the NEDC. Euro 1, 2 and 4 Ford Mondeo water and oil warm up rates in real world urban driving were determined and shown to be comparable with the results of Kunze et al. (2) for a BMW on the NEDC. This paper explores the use of forced convective heat exchange between the cooling water and the lube oil during the warm-up period. A technique of a step warm-up of the engine at 32 Nm at 2000 rpm (35% of peak power) was used and the engine lube oil and water temperature monitored. It was shown that the heat exchanger results in an increase in lube oil temperature by 4°C, which increased to 10°C if enhanced heat transfer to the water was used from an exhaust port heat exchanger.
Technical Paper

Study of thermal characteristics, fuel consumption and emissions during cold start using an on-board measuring method for SI car real world urban driving

2007-07-23
2007-01-2065
Exhaust emissions were measured under real world urban driving conditions using a set of in-vehicle FTIR emission measurement system, which is able to measure 65 emission components simultaneously at a rate of 0.5 Hz. The test vehicle was a EURO 2 emission compliant SI car equipped with real time fuel consumption measurement and temperature measurement along the exhaust pipe across the catalyst allowing the matching of thermal characteristics to emission profiles and monitor fuel consumption. The temperature profile indicated that the light-off of the catalyst took about 150∼200 seconds. The warm up of the lubricating oil and coolant water required a longer time than the catalyst did. The impact of ambient temperatures on lubricating oil and coolant water warm ups was greater than that on the light-off of the catalyst. The heat loss and energy balance were calculated during the whole cycle period. The influence of cold start on fuel consumption was investigated.
Technical Paper

Impact of Traffic Conditions and Road Geometry on Real World Urban Emissions Using a SI Car

2007-04-16
2007-01-0308
A precision in-vehicle tail-pipe emission measurement system was installed in a EURO1 emissions compliant SI car and used to investigate the variability in tail-pipe emission generation at an urban traffic junction and uphill/downhill road, and thereby the impact of road topography on emissions. Exhaust gas and skin temperatures were also measured along the exhaust pipe of the instrumented vehicle, so the thermal characteristics and the efficiency of the catalyst could be monitored. Different turning movements (driving events) at the priority T-junction were investigated such as straight, left and right turns with and without stops. The test car was run until hot stable operating conditions were achieved before each test, thereby negating cold start effects.
Technical Paper

Characterization of Regulated and Unregulated Cold Start Emissions for Different Real World Urban Driving Cycles Using a SI Passenger Car

2008-06-23
2008-01-1648
An in-vehicle FTIR emission measurement system was used to investigate the exhaust emissions under different real world urban driving conditions. Five different driving cycles were developed based on real world urban driving conditions including urban free flow driving, junction maneuver, congested traffic and moderate speed cruising. The test vehicle was a EURO 2 emission compliant SI car equipped with temperature measurement along the exhaust pipe across the catalyst and real time fuel consumption measurement system. Both regulated and non-regulated emissions were measured and analyzed for different driving cycles. All journeys were started from cold. The engine warm up features and emissions as a function of engine warm up for different driving conditions were investigated.
Technical Paper

Comparisons of the Exhaust Emissions for Different Generations of SI Cars under Real World Urban Driving Conditions

2008-04-14
2008-01-0754
EURO 1, 2 3 and 4 SI (Spark Ignition) Ford Mondeo passenger cars were compared for their real world cold start emissions using an on-board FTIR (Fourier Transform Infrared) exhaust emission measurement system. The FTIR system can measure up to 65 species including both regulated and non-regulated exhaust pollutants at a rate of 0.5 Hz. The driving parameters such as speed, fuel consumption and air/fuel ratio were logged. The coolant water, lube oil and exhaust temperatures were also recorded. A typical urban driving cycle including a loop and a section of straight road was used for the comparison test as it was similar to the legislative ECE15 urban driving cycle. Exhaust emissions were calculated for the whole journey average and compared to EU legislation. The cold start transient emissions were also investigated as a separate parameter and this was where there was the greatest difference between the four vehicles.
Technical Paper

Comparison of Real World Emissions in Urban Driving for Euro 1-4 Vehicles Using a PEMS

2009-04-20
2009-01-0941
An on-board emission measurement system (PEMS), the Horiba OBS 1300, was installed in Euro 1-4 SI cars of the same model to investigate the impact of vehicle technology on exhaust emissions, under urban driving conditions with a fully warmed-up catalyst. A typical urban driving loop cycle was used with no traffic loading so that driver behavior without the influence of other traffic could be investigated. The results showed that under real world driving conditions the NOx emissions exceeded the legislated values and only at cruise was the NOx emissions below the legislated value. The higher NOx emissions during real-world driving have implications for higher urban Ozone formation. With the exception of the old EURO1 vehicle, HC and CO emissions were under control for all the vehicles, as these are dominated by cold start issues, which were not included in this investigation.
Technical Paper

Ignition Timing Impact on the Performance of an Old Technology Vehicle Fuelled by Ethanol/Petrol Blends

2009-06-15
2009-01-1968
The scope of this work was to study the impact of the ignition timing on the engine’s performance on an old technology vehicle fuelled by ethanol/petrol blends. Many previous studies have been published on the subject, but most of them were carried on SI engines using bench dynamometers. In this work, a 1.3 L Ford Escort equipped with a carburettor and without a catalytic converter was tested on a chassis dynamometer. Blends with ethanol concentrations of 10%, 20% and 50% per volume were used and the results were compared with the reference LRP fuel. All tests were performed at three different constant speeds of 30, 50 and 90 km/h, under full load with wide open throttle. Torque and rpm of the engine were recorded by the chassis dynamometer’s software. The fuel consumption was measured by means of the gravimetric method. All measurements were taken at three different settings of the advance angle, at 0°, 4° and 12° BTDC.
Technical Paper

Investigation of Three Different Mixtures of Ecofuels Used on a Perkins Engine on a Test Bed

2010-10-05
2010-01-1970
This paper describes and analyzes the results of investigations of application of heavy alcohols as an ingredient of diesel fuel. Three different mi xtures of butanol (as heavy alcohol), rape oil (as vegetable oil) and conventional diesel fuel (this mixture was called the biomixdiesel-BMD) were tested using a Perkins engine on a test bed. Contrary to existing experiences both the maximum power output and the maximum torque of the engine were higher in the whole range of the speed of the engine crankshaft when the engine biomixdiesel (BMD) was reinforced. The addition of the component biomix to fuel influenced the specific fuel consumption. Generally, with the larger part of the biomix components the specific fuel consumption were higher. Also the engine power was higher and one should expect that in exploitation the specific fuel consumption should not increase. It is very important that this fuel could be used to reinforce old, already existing and the future diesel engines.
Technical Paper

The Influence of an On Line Oil Recycler on Oil Quality with Oil Age from a Low Emission DI Diesel Engine

2003-10-27
2003-01-3226
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infrared heater, to remove water and light diesel fractions in the oil. The impact of this oil recycler with 1 micron fine bypass filter on oil quality was investigated over a 72 hour oil age. Comparisons tests were undertaken without and with the recycler on a Euro 2 Perkins Phaser 180Ti 6 cylinder 6 litre turbo-charged inter-cooled DI diesel engine. The tests were carried out at 2000rpm and 100kW with 473 Nm load. A stop start test cycle was used with a cold start each time and a typical test period of 2 hours. The results showed that the oil quality in this low emission engine test was extremely good. The on line recycler achieved improvements in the oil quality. With the recycler, the carbon accumulation rate in the oil was reduced by 78%. The carbon removal rate by the recycler was 0.40 g/hr. The wear metals in the oil were significantly reduced.
Technical Paper

The Influence of an On Line Oil Recycler on Oil Quality from a Bus in Service Using Synthetic Oil

2001-05-07
2001-01-1969
A method of cleaning lubricating oil on line was investigated using a one micron bypass particulate filter followed by an infra-red heater, to remove water, dissolved gases and light diesel fractions in the oil. The impact of this oil recycler on oil quality was studied using synthetic oil in an on-road bus test. The bus was of Euro-1 emissions standard and equipped with a Cummins 6 cylinder 8.3 litre turbo-charged inter-cooled DI engine. Comparisons tests were undertaken with and without the oil recycler for about 28,000 miles. Oil samples were analysed about every 2000 miles. The results showed that the on line oil recycler achieved significant improvements in the oil quality. With the recycler, the TBN depletion rate was reduced by 52%, the TAN increase rate was reduced by 27% and the carbon accumulation rate in the oil was reduced by 42%. The fuel dilution was reduced by the recycler.
Technical Paper

Oil Quality with Oil Age in an IDI Diesel Passenger Car Using an On Line Lubricating Oil Recycler Under Real World Driving

2001-05-07
2001-01-1898
A method of cleaning lubricating oil on line was investigated using a fine 1 micron bypass particulate filter, followed by an infra-red heater to remove water and light diesel fractions in the oil. A Ford 1.8 litre IDI diesel passenger car was investigated under real world driving conditions. Comparison was made with the oil quality without the recycler. All the tests were carried out on the same vehicle over 7000 miles with and without the recycler. The results showed that the on line oil recycler cleaning system reduced the rate of reduction of TBN and the rate of increase of TAN by 54% and 50% respectively. The reduction in the rate of carbon accumulation in the oil was 42%. There was also a reduction in fuel dilution. All the wear metals in the oil were greatly reduced by the recycler, the iron was reduced by 76%, the lead was reduced by 85% and the aluminum was totally removed.
Technical Paper

Estimating the CO2 Emissions Reduction Potential of Various Technologies in European Trucks Using VECTO Simulator

2017-09-04
2017-24-0018
Heavy-duty vehicles (HDVs) account for some 5% of the EU’s total greenhouse gas emissions. They present a variety of possible configurations that are deployed depending on the intended use. This variety makes the quantification of their CO2 emissions and fuel consumption difficult. For this reason, the European Commission has adopted a simulation-based approach for the certification of CO2 emissions and fuel consumption of HDVs in Europe; the VECTO simulation software has been developed as the official tool for the purpose. The current study investigates the impact of various technologies on the CO2 emissions of European trucks through vehicle simulations performed in VECTO. The chosen vehicles represent average 2015 vehicles and comprised of two rigid trucks (Class 2 and 4) and a tractor-trailer (Class 5), which were simulated under their reference configurations and official driving cycles.
Technical Paper

Controlling Particulate Matter Emissions in Vehicles Using Different Strategies under the Heavy-Duty Test Cycle

2012-04-16
2012-01-0885
Since 1997 in Belgium, the market share of vehicles equipped with diesel engine has grown up from 50% to nearly 80%. Most of the drivers are using diesel cars for private or company purposes and gasoline powered engine vehicles sales dropped dramatically since then. This evolution is clearly a game-changer regarding the type of regulated emissions we can find as dominant. Tests and analysis for this work focused on diesel passenger cars and one of the main drivers for that was the great demand of new cars fitted with exhaust aftertreatment devices (DPF, DOC, LBC etc.). In this paper the performance of soot filters were measured and presented, based not on the NEDC but on the heavy duty 13-Mode test cycle which emphasize mainly at low-speed driving conditions, such as all passenger cars are running currently, and is also characterized by low average engine loads and low exhaust temperatures.
Technical Paper

Study of the Emissions Generated at Intersections for a SI Car under Real World Urban Driving Conditions

2006-04-03
2006-01-1080
A precision in-vehicle tail-pipe emission measurement system was installed in a EURO1 emissions compliant SI car and used to investigate the variability in tail-pipe emission generation at an urban traffic junction. Exhaust gas and skin temperatures were also measured along the exhaust pipe of the instrumented vehicle, so the thermal characteristics and the efficiency of the catalyst monitored could be included in the analysis. Different turning movements (driving patterns) at the priority T-junction were investigated such as straight, left and right turns with and without stops. The test car was hot stable running conditions before each test, thereby negating cold start effects. To demonstrate the influence of the junction on tail-pipe emissions and fuel consumption, distance based factors were determined that compared the intersection drive-through measurements with steady speed (state) runs. Fuel consumption was increased at intersections by a factor of 1.3∼5.9.
Technical Paper

Influence of Oil Age on Particulate Size Distributions with an On Line Oil Recycler from an IDI Passenger Car Diesel Engine

2004-10-25
2004-01-2905
Mass weighted size distributions of particulate emissions as a function of oil age were investigated using a set of Anderson Impactors on an IDI passenger car engine test. This engine was fitted with an on-line bypass lubricating oil recycler aiming to extend the oil life, reduce fuel consumption and exhaust emissions. A stop start test cycle was used with a cold start each time and a typical cycle period of 2∼3 hours. The whole test was carried out for nearly 500 hours. The first 310 hours of testing were with the oil recycler fitted and thereafter the test continued with the oil recycler disconnected. The results show that 60∼80% of mass particulates were smaller than 1.1 μm in aerodynamic diameter with the oil recycler fitted and this percentage was reduced to 40∼60% after disconnection of the oil recycler. The changes in size distribution with oil age mainly happened in the size ranges of 1.1∼0.65 μm, 0.65∼0.43 μm and <0.43 μm.
Technical Paper

Diesel Fuel Dilution and Particulate Absorption Contamination in Used Lubricating Oil

1989-09-01
892080
Lubricating oil taken from the sump of a direct injection diesel engine has been analysed for the concentration of hydrocarbon contamination over a period of time. The oil was filtered and the sediment SOF analysed together with the filtrate. The results showed that there was an increase in the contamination in the used oil for both the filtrate and sediment hydrocarbon contamination. The carbon number distribution of the filtrate and sediment SOF were different. The filtrate representing contamination of the oil by fuel dilution and the sediment SOF contamination by particulates adsorbed into the oil in the combustion chamber. The highest contribution to the hydrocarbon contamination of the oil was from the filtrate in the early ageing period with an increasing contribution from the SOF of the sediment.
Technical Paper

The Aging of Lubricating Oil, The Influence of Unburnt Fuel and Particulate SOF Contamination

1987-11-01
872085
The role of lubricating oil as a sink for polycyclic aromatic compounds (PAC) and alkanes derived from unburnt fuel is described for two different oils used in two different DI diesel engines. The diesel engines used were, an older technology Petter AV1 single cylinder mine pumping engine and a Perkins 4.236 current technology engine. Analysis of the oil was by gas chromatography using simultaneous parallel triple detection, allowing analysis of hydrocarbons and nitrogen and sulphur containing compounds. Analysis of unused lubricating oil showed negligible concentrations of PAC and low molecular weight alkanes (< C20). The oil from each engine was analysed periodically during use and showed a rapid and significant accumulation of hydrocarbons which reached significant concentrations after only 10 hours use. The older technology engine showed a much higher accumulation rate.
X