Refine Your Search

Topic

Search Results

Technical Paper

A Study on Prediction of Unburned Hydrocarbons in Active Pre-chamber Gas Engine: Combustion Analysis Using 3D-CFD by Considering Wall Quenching Effects

2021-09-05
2021-24-0049
To reproduce wall quenching phenomena using 3D-CFD, a wall quenching model was constructed based on the Peclet number. The model was further integrated with the flame propagation model. Combustion analysis showed that that a large amount of unburned hydrocarbons (UHCs) remained in the piston clevis and small gaps. Furthermore, the model was capable of predicting the increase in UHC emissions when there was a delay in the ignition time. The flame front cells were plotted on Peters' premixed turbulent combustion diagram to identify transitions in the combustion states. It was found that the flame surface transitioned from corrugated flamelets through thin reaction zones to wrinkled flamelets and further to laminar flamelets, which led to wall quenching. The turbulent Reynolds number (Re) decreased rapidly due to the increase in laminar flame speed and flame thickness and the decrease in turbulent intensity and turbulent scale.
Technical Paper

Numerical Methods on VVA and VCR Concepts for Fuel Economy Improvement of a Commercial CNG Truck

2020-09-15
2020-01-2083
Natural gas has been used in spark-ignition (SI) engines of natural gas vehicles (NGVs) due to its resource availability and stable price compared to gasoline. It has the potential to reduce carbon monoxide emissions from the SI engines due to its high hydrogen-to-carbon ratio. However, short running distance is an issue of the NGVs. In this work, methodologies to improve the fuel economy of a heavy-duty commercial truck under the Japanese Heavy-Duty Driving Cycle (JE05) is proposed by numerical 1D-CFD modeling. The main objective is a comparative analysis to find an optimal fuel economy under three variable mechanisms, variable valve timing (VVT), variable valve actuation (VVA), and variable compression ratio (VCR). Experimental data are taken from a six-cylinder turbocharged SI engine fueled by city gas 13A. The 9.83 L production engine is a CR11 type with a multi-point injection system operated under a stoichiometric mixture.
Technical Paper

Effects of Partial Oxidation in an Unburned Mixture on a Flame Stretch under EGR Conditions

2021-09-21
2021-01-1165
The purpose of the present study is to find a way to extend a combustion stability limit for diluted combustion in a spark-ignition (SI) gasoline engine which has a high compression ratio. This paper focuses on partial oxidation in an unburned mixture which is observed in the high compression engine and clarifies the effect of partial oxidation in an unburned mixture on the behavior of a flame stretch and the extinction limit. The behavior of the flame stretch was simulated using the detailed chemical kinetics simulation with the opposed-flow flame reactor model. In the simulation, the reactants which have various reaction progress variables were examined to simulate the flame stretch and extinction under the partial oxidation conditions. The mixtures were also diluted by complete combustion products which represent exhaust gas recirculation (EGR).
Technical Paper

Effects of Using an Electrically Heated Catalyst on the State of Charge of the Battery Pack for Series Hybrid Electric Vehicles at Cold Start

2020-04-14
2020-01-0444
Battery models are being developed as a component of the powertrain systems of hybrid electric vehicles (HEVs) to predict the state of charge (SOC) accurately. Electrically heated catalysts (EHCs) can be employed in the powertrains of HEVs to reach the catalyst light off temperature in advance. However, EHCs draw power from the battery pack and hence sufficient energy needs to be stored to power auxiliary components. In series HEVs, the engine is primarily used to charge the battery pack. Therefore, it is important to develop a control strategy that triggers engine start/stop conditions and reduces the frequency of engine operation to minimize the equivalent fuel consumption. In this study, a battery pack model was constructed in MATLAB-Simulink to investigate the SOC variation of a high-power lithium ion battery during extreme engine cold start conditions (-7°C) with/without application of an EHC.
Technical Paper

Study on Burning Velocity of LPG Fuel in a Constant Volume Combustion Chamber and an SI Engine

2010-04-12
2010-01-0614
Compared with petroleum fuel, liquefied petroleum gas (LPG) demonstrates advantages in low CO₂ emission. This is because of propane (C₃H₈), n-butane (n-C₄H₁₀) and i-butane (i-C₄H₁₀), which are the main components of LPG, making H/C ratio higher. In addition, LPG is suitable for high efficient operation of a spark ignition (SI) engine due to its higher research octane number (RON). Because of these advantages, that is, diversity of energy source and reduction of CO₂, in the past several years, LPG vehicles have widely been used as the alternate gasoline vehicles all over the world. Consequently, it is absolutely essential for the performance increase in LPG vehicles to comprehend combustion characteristics of LPG. In this study, the differences of laminar burning velocity between C₃H₈, n-C4H10, i-C₄H₁₀ and regular gasoline were evaluated experimentally with the use of a constant volume combustion chamber (CVCC).
Technical Paper

A Numerical Study on Combustion and Exhaust Gas Emissions Characteristics of a Dual Fuel Natural Gas Engine Using a Multi-Dimensional Model Combined With Detailed Kinetics

2002-05-06
2002-01-1750
A numerical study was carried out to investigate combustion characteristics of a dual-fuel gas diesel engine, using a multi-dimensional model combined with detailed chemical kinetics, including 43 chemical species and 173 elementary reactions. In calculations, the effects of initial temperature, EGR ratios on ignition, and combustion were examined. The results indicated EGR combined with intake preheating can favorably reduced NOx and THC emissions simultaneously. This can be explained by the fact that combustion mechanism is changed from flame propagation to HCCl like combustion.
Technical Paper

Improvement of Combustion in a Dual Fuel Natural Gas Engine with Half the Number of Cylinders

2003-05-19
2003-01-1938
A dual fuel natural gas diesel engine suffers from remarkably lower thermal efficiency and higher THC, CO emissions at lower load because of its lower burned mass fraction caused by the lean pre-mixture. To overcome this inevitable disadvantage at lower load, two methods of reducing the number of operating cylinders were examined. One method was to use the two cylinders operation while the second one was to use the quasi-two cylinders operation. As a result, it was found that the unburned hydrocarbons and CO emissions could be favorably reduced with the improvement of thermal efficiency by reducing the number of cylinders to half for a dual fuel natural gas diesel engine. Moreover, it was also found that the quasi-two cylinders operation could improve the torque fluctuation more compared to the two cylinders operation.
Technical Paper

Development and Improvement of an Ultra Lightweight Hybrid Electric Vehicle

2003-03-03
2003-01-2011
An experimental ultra lightweight compact vehicle named “the Waseda Future Vehicle” has been designed and developed, aiming at a simultaneous achievement of low exhaust gas emissions, high fuel economy and driving performance. The vehicle is powered by a dual-type hybrid system having a SI engine, electric motor and generator. A high performance lithium-ion battery unit is used for electricity storage. A variety of driving cycles were reproduced using the hybrid vehicle on a chassis dynamometer. By changing the logics and parameters in the electronic control unit (ECU) of the engine, a significant improvement in emissions was possible, achieving a very high fuel economy of 34 km/h at the Japanese 10-15 drive mode. At the same time, a numerical simulation model has been developed to predict fuel economy. This would be very useful in determining design factors and optimizing operating conditions in the hybrid power system.
Technical Paper

A Numerical Study on Combustion and Exhaust Gas Emissions Characteristics of a Dual Fuel Natural Gas Engine Using a Multi-Dimensional Model Combined with Detailed Kinetics

2003-05-19
2003-01-1939
Natural gas pre-mixture is ignited by a small amount of pilot fuel in the dual fuel engine. In this paper, numerical studies were carried out to investigate the combustion and exhaust gas emissions formation process of this engine type by using a multi dimensional model combined with the detailed chemical kinetics including 57 chemical species and 290 elementary reactions. In calculation, the effect of the pre-mixture concentration on combustion was examined. The result indicated that the increased concentration of natural gas could improve the burning fraction and THC, CO emissions due to the increased pre-mixture consumption rate and the cylinders gas temperature.
Technical Paper

Mixture formation and combustion characteristics of directly injected LPG spray

2003-05-19
2003-01-1917
It has been recognized that alternative fuels such as liquid petroleum gas (LPG) has less polluting combustion characteristics than diesel fuel. Direct-injection stratified-charge combustion LPG engines with spark-ignition can potentially replace conventional diesel engines by achieving a more efficient combustion with less pollution. However, there are many unknowns regarding LPG spray mixture formation and combustion in the engine cylinder thus making the development of high-efficiency LPG engines difficult. In this study, LPG was injected into a high pressure and temperature atmosphere inside a constant volume chamber to reproduce the stratification processes in the engine cylinder. The spray was made to hit an impingement wall with a similar profile as a piston bowl. Spray images were taken using the Schlieren and laser induced fluorescence (LIF) method to analyze spray penetration and evaporation characteristics.
Technical Paper

A Study on the Characteristics of Natural Gas Combustion at a High Compression Ratio by Using a Rapid Compression and Expansion Machine

2012-09-10
2012-01-1651
Natural gas is an attractive alternative fuel for internal combustion engines. Homogeneous charge compression ignition (HCCI) combustion is considered to be one of the most promising measures for increasing thermal efficiency and reducing emissions, but it is difficult to control and stabilize its ignition and combustion processes. This paper describes an experimental study of natural gas combustion utilizing two types of ignition assistance. Spark assistance, which is used for conventional spark ignition (SI) engines, and pilot diesel injection, hereinafter called diesel pilot, which generates multiple ignition points by using a small injection of diesel that accounts for 2% of the total heat release for the cycle. The performance of these two approaches was compared with respect to various combustion characteristics when burning homogeneous natural gas mixtures at a high compression ratio.
Technical Paper

The Effects of Jatropha-derived Biodiesel on Diesel Engine Combustion and Emission Characteristics

2012-09-10
2012-01-1637
The objective of the present research is to investigate the effects on diesel engine combustion and NOx and PM emission characteristics in case of blending the ordinary diesel fuel with biodiesel in passenger car diesel engines. Firstly, we conducted experiments to identify the combustion and emissions characteristics in a modern diesel engine complying with the EURO 4 emission standard. Then, we developed a numerical simulation model to explain and generalize biodiesel combustion phenomena in detail and generalize emission characteristics. The experimental and simulation results are useful to reduce biodiesel emissions by controlling engine operating and design parameters in the diesel engine. Engine tests were conducted and a mathematical model created to investigate the effects of 40% and 100% methyl oleate modeled fuel representing Jatropha-derived biodiesel on diesel combustion and emission characteristics, over a wide range of passenger car DI diesel engine operating conditions.
Technical Paper

Achievement of Medium Engine Speed and Load Premixed Diesel Combustion with Variable Valve Timing

2006-04-03
2006-01-0203
A variable valve timing (VVT) mechanism was applied to achieve premixed diesel combustion at higher load for low emissions and high thermal efficiency in a light duty diesel engine. By means of late intake valve closing (LIVC), compressed gas temperatures near the top dead center are lowered, thereby preventing too early ignition and increasing ignition delay to enhance fuel-air mixing. The variability of effective compression ratio has significant potential for ignition timing control of conventional diesel fuel mixtures. At the same time, the expansion ratio is kept constant to ensure thermal efficiency. Combining the control of LIVC, EGR, supercharging systems and high-pressure fuel injection equipment can simultaneously reduce NOx and smoke. The NOx and smoke suppression mechanism in the premixed diesel combustion was analyzed using the 3D-CFD code combined with detailed chemistry.
Technical Paper

Controlling Combustion Characteristics Using a Slit Nozzle in a Direct-Injection Methanol Engine

1994-10-01
941909
A new type of fuel injection nozzle, called a “slit nozzle,” has been developed to improve poor ignitability and to stabilize combustion under low load conditions in direct-injection methanol diesel engines manufactured for medium-duty trucks. This nozzle has a single oblong vent like a slit. Engine test results indicate that the slit nozzle can improve combustion and thermal efficiency, especially at low loads and no load. This can be explained by the fact that the slit nozzle forms a more highly concentrated methanol spray around the glow-plug than do multi-hole nozzles. As a result, this nozzle improves flame propagation.
Technical Paper

Predicting Exhaust Emissions in a Glow-Assisted DI Methanol Engine Using a Combustion Model Combined with Full Kinetics

1996-10-01
961935
A numerical model has been developed to predict the formation of NOx and formaldehyde in the combustion and post-combustion zones of a methanol DI engine. For this purpose, a methanol-air mixture model combined with a full kinetics model has been introduced, taking into account 39 species with their 157 related elementary reactions. Through these kinetic simulations, a concept is proposed for optimizing methanol combustion and reducing exhaust emissions.
Technical Paper

Simulating Exhaust Emissions Characteristics and Their Improvements in a Glow-Assisted DI Methanol Engine Using Combustion Models Combined with Detailed Kinetics

1997-05-01
971598
An experimental and numerical study has been conducted on the emission and reduction of HCHO (formaldehyde) and other pollutants formed in the cylinder of a direct-injection diesel engine fueled by methanol. Engine tests were performed under a variety of intake conditions including throttling, heating, and EGR (exhaust gas recirculation) for the purpose of improving these emissions by changing gas compositions and combustion temperatures in the cylinder. Moreover, a detailed kinetics model was developed and applied to methanol combustion to investigate HCHO formation and the reduction mechanism influenced by associated elementary reactions and in-cylinder mixing.
Technical Paper

Ignition and Combustion Control of Diesel HCCI

2005-05-11
2005-01-2132
Homogeneous Charge Compression Ignition (HCCI) is effective for the simultaneous reduction of soot and NOx emissions in diesel engine. In general, high octane number fuels (gasoline components or gaseous fuels) are used for HCCI operation, because these fuels briefly form lean homogeneous mixture because of long ignition delay and high volatility. However, it is necessary to improve injection systems, when these high octane number fuels are used in diesel engine. In addition, the difficulty of controlling auto-ignition timing must be resolved. On the other hand, HCCI using diesel fuel (diesel HCCI) also needs ignition control, because diesel fuel which has a low octane number causes the early ignition before TDC. The purpose of this study is the ignition and combustion control of diesel HCCI. The effects of parameters (injection timing, injection pressure, internal/external EGR, boost pressure, and variable valve timing (VVT)) on the ignition timing of diesel HCCI were investigated.
Technical Paper

Developments of the Reduced Chemical Reaction Scheme for Multi-Component Gasoline Fuel

2015-09-01
2015-01-1808
The reduced chemical reaction scheme which can take the effect of major fuel components on auto ignition timing into account has been developed. This reaction scheme was based on the reduced reaction mechanism for the primary reference fuels (PRF) proposed by Tsurushima [1] with 33 species and 38 reactions. Some pre-exponential factors were modified by using Particle Swarm Optimization to match the ignition delay time versus reciprocal temperature which was calculated by the detailed scheme with 2,301 species and 11,116 elementary chemical reactions. The result using the present reaction scheme shows good agreements with that using the detailed scheme for the effects of EGR, fuel components, and radical species on the ignition timing under homogeneous charge compression ignition combustion (HCCI) conditions.
Technical Paper

Exhaust Purification Performance Enhancement by Early Activation of Three Way Catalysts for Gasoline Engines Used in Hybrid Electric Vehicles

2019-09-09
2019-24-0148
Three-way catalyst (TWC) converters are used to remove harmful substances (e.g., carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC)) emitted from gasoline engines. However, a large amount of emissions could be emitted before the TWC reaches its light-off temperature during a cold start. For hybrid electric vehicles (HEVs) powered by gasoline engines, the emission purification performance by TWC converters unfortunately deteriorates because of mode switching from engine to battery and vice versa, which can repeatedly generate cold start conditions for the TWCs. In this study, aiming to reduce emissions from series HEVs by early activation of TWCs, numerical simulations and experiments are carried out. An HEV is tested on a chassis dynamometer in the Worldwide Light-duty Test Cycle (WLTC) mode. The upstream and downstream gas conditions of the close-coupled catalyst converter are measured.
Technical Paper

A Fundamental Study on Combustion Characteristics in a Pre-Chamber Type Lean Burn Natural Gas Engine

2019-09-09
2019-24-0123
Pre-chamber spark ignition technology can stabilize combustion and improve thermal efficiency of lean burn natural gas engines. During compression stroke, a homogeneous lean mixture is introduced into pre-chamber, which separates spark plug electrodes from turbulent flow field. After the pre-chamber mixture is ignited, the burnt jet gas is discharged through multi-hole nozzles which promotes combustion of the lean mixture in the main chamber due to turbulence caused by high speed jet and multi-points ignition. However, details mechanism in the process has not been elucidated. To design the pre-chamber geometry and to achieve stable combustion under the lean condition for such engines, it is important to understand the fundamental aspects of the combustion process. In this study, a high-speed video camera with a 306 nm band-pass filer and an image intensifier is used to visualize OH* self-luminosity in rapid compression-expansion machine experiment.
X