Refine Your Search

Topic

Search Results

Standard

COMMUNICATIONS MANAGEMENT UNIT (CMU) MARK 2

2019-11-26
CURRENT
ARINC758-4
This ARINC Standard specifies the ARINC 758 Mark 2 Communications Management Unit (CMU) as an on-board message router capable of managing various datalink networks and services available to the aircraft. Supplement 4 adds Ethernet interfaces, per ARINC Specification 664 Part 2. This will allow the CMU to communicate with IP based radio transceivers (e.g., L-Band Satellite Communication Systems (Inmarsat SwiftBroadband (SBB) and Iridium Certus), ACARS over IP, AeroMACS, etc.).
Standard

AIRCRAFT SOFTWARE COMMON CONFIGURATION REPORTING

2019-08-13
CURRENT
ARINC843-1
This standard defines a common configuration report format that can be retrieved from an aircraft for use by ground tools and maintenance personnel. Reports will be generated in Extensible Markup Language (XML) format and structured as defined by this document. Several optional elements and attributes are defined to allow flexibility for a given report. This standard provides aircraft manufacturers, regulatory agencies, and airlines a format standard for aircraft configuration reporting, and facilitates automated comparison of configuration data reports (e.g., authorized versus as flying, etc.).
Standard

AIRCRAFT DATA INTERFACE FUNCTION (ADIF)

2020-07-21
CURRENT
ARINC834-8
This document defines an Aircraft Data Interface Function (ADIF) developed for aircraft installations that incorporate network components based on commercially available technologies. This document defines a set of protocols and services for the exchange of aircraft avionics data across aircraft networks. A common set of services that may be used to access specific avionics parameters are described. The ADIF may be implemented as a generic network service, or it may be implemented as a dedicated service within an ARINC 759 Aircraft Interface Devices (AID) such as those used with an Electronic Flight Bag (EFB). Supplement 8 includes improvements in the Aviation Data Broadcast Protocol (ADBP), adds support for the Media Independent Aircraft Messaging (MIAM) protocol, and contains data security enhancements. It also includes notification and deprecation of the Generic Aircraft Parameter Service (GAPS) protocol that will be deleted in a future supplement.
Standard

AIRCRAFT DATA NETWORK, PART 1, SYSTEMS CONCEPTS AND OVERVIEW

2019-06-20
CURRENT
ARINC664P1-2
The purpose of this document is to provide an overview of data networking standards recommended for use in commercial aircraft installations. These standards provide a means to adapt commercially defined networking standards to an aircraft environment. It refers to devices such as bridges, switches, routers and hubs and their use in an aircraft environment. This equipment, when installed in a network topology, can optimize data transfer and overall avionics performance.
Standard

AIRCRAFT AUTONOMOUS DISTRESS TRACKING (ADT)

2019-08-26
CURRENT
ARINC680
This document describes the technical requirements, architectural options, and recommended interface standards to support an Autonomous Distress Tracking (ADT) System intended to meet global regulatory requirements for locating aircraft in distress situations and after an accident. This document is prepared in response to International Civil Aviation Organization (ICAO) and individual Civil Aviation Authorities (CAAs) initiatives.
Standard

INTERSYSTEM NETWORK INTEGRATION

2021-06-24
CURRENT
ARINC688
The purpose of this document is to provide guidelines for integrating previously standalone cabin systems such as cabin management systems, In-Flight Entertainment (IFE) systems, In-Flight Connectivity (IFC) systems, galley systems, surveillance systems, etc. Resource sharing between systems can reduce airline costs and/or increase functionality. But, as systems expose their internal resources to external systems, the risk of an intrusion that could degrade function and/or negatively expose the supplier’s or airline’s brand increases. This document provides a recommended IP networking design framework between aircraft systems to reduce the operational security threats while still supporting the necessary intersystem routing.
Standard

TIMELY RECOVERY OF FLIGHT DATA (TRFD)

2021-08-06
CURRENT
ARINC681
The difficulty in locating crash sites has prompted international efforts for alternatives to quickly recover flight data. This document describes the technical requirements and architectural options for the Timely Recovery of Flight Data (TRFD) in commercial aircraft. ICAO and individual Civil Aviation Authorities (CAAs) levy these requirements. The ICAO Standards and Recommended Practices (SARPs) and CAA regulations cover both aircraft-level and on-ground systems. This report also documents additional system-level requirements derived from the evaluation of ICAO, CAA, and relevant industry documents and potential TRFD system architectures. It describes two TRFD architectures in the context of a common architectural framework and identifies requirements. This report also discusses implementation recommendations from an airplane-level perspective.
Standard

MARK I AVIATION KU-BAND AND KA-BAND SATELLITE COMMUNICATION SYSTEM PART 1 PHYSICAL INSTALLATION AND AIRCRAFT INTERFACES

2019-09-19
CURRENT
ARINC791P1-3
This standard sets forth the desired characteristics of Aviation Ku-band Satellite Communication (Satcom) and Ka-band Satcom Systems intended for installation in all types of commercial air transport aircraft. The intent of this characteristic is to provide guidance on the interfaces, form, fit, and function of the systems. This document also describes the desired operational capability of the equipment needed to provide a broadband transport link that can be used for data, video, and voice communications typically used for passenger communications and/or entertainment. The systems described in this characteristic are not qualified, at this writing, for aviation safety functions.
Standard

LOW-EARTH ORBITING AVIATION SATELLITE COMMUNICATION SYSTEM

2016-08-05
CURRENT
ARINC771
This document sets forth the desired characteristics of the Iridium Low-Earth Orbiting (LEO) Aviation Satellite Communication (Satcom) System avionics intended for installation in all types of aircraft including commercial transport, business, and general aviation aircraft. The intent of this document is to provide a description of the system components, aircraft interface, and satellite communication functions. It also describes the desired system performance and operational capability of the equipment. This characteristic specifies equipment using the next generation of Iridium satellites (referred to as Iridium NEXT) operating in L band with planned launch starting in 2016 and completed network by end of 2017. The services used on the NEXT network are referred to as Iridium CertusSM. The Iridium NEXT satellite network replaces the Iridium legacy satellite network known as Block 1.
Standard

AERONAUTICAL MOBILE AIRPORT COMMUNICATION SYSTEM (AEROMACS) TRANSCEIVER AND AIRCRAFT INSTALLATION STANDARDS

2017-07-07
CURRENT
ARINC766
This documents defines the Installation Characteristics of an airborne radio transceiver capable of broadband wireless communication with an Airport Surface Network. The Aeronautical Mobile Airport Communications System (AeroMACS) Radio Unit (ARU) will operate in the aeronautical protected frequency of 5091 MHz to 5150 MHz, utilizing the IEEE 802.16e WiMAX protocol. It is intended to offload some of the congested narrowband VHF airport traffic used for ATS and AOC communications. ARU and Antenna Form, Fit, Function and Interfaces are described.
Standard

MARK 1 AVIATION KU-BAND AND KA-BAND SATELLITE COMMUNICATION SYSTEM PART 1 PHYSICAL INSTALLATION AND AIRCRAFT INTERFACES

2014-08-29
CURRENT
ARINC791P1-2
This standard sets forth the desired characteristics of Aviation Ku-band Satellite Communication (Satcom) and Ka-band Satcom Systems intended for installation in all types of commercial air transport aircraft. The intent of this characteristic is to provide guidance on the interfaces, form, fit, and function of the systems. This document also describes the desired operational capability of the equipment needed to provide a broadband transport link that can be used for data, video, and voice communications typically used for passenger communications and/or entertainment. The systems described in this characteristic are not qualified, at this writing, for aviation safety functions.
Standard

LOW-EARTH ORBITING AVIATION SATELLITE COMMUNICATION SYSTEMS

2018-10-01
CURRENT
ARINC771-1
This document sets forth the desired characteristics of the Iridium Low-Earth Orbiting (LEO) Aviation Satellite Communication (Satcom) System avionics intended for installation in all types of aircraft including commercial transport, business, and general aviation aircraft. The intent of this document is to provide a description of the system components, aircraft interfaces, and satellite communication functions. It also describes the desired system performance and operational capability of the equipment.
Standard

MARK 3 AVIATION SATELLITE COMMUNICATION SYSTEMS

2017-08-09
CURRENT
ARINC781-7
This document sets forth the desired characteristics of an aviation satellite communication (Satcom) system intended for installation in all types of commercial transport and business aircraft. The intent of this document is to provide general and specific guidance on the form factor and pin assignments for the installation of the avionics primarily for airline use. It also describes the desired operational capability of the equipment to provide data and voice communications, as well as additional standards necessary to ensure interchangeability. This Characteristic specifies equipment using Inmarsat satellites operating in L-band. Ku-band and Ka-band equipment is specified in ARINC Characteristic 791.
Standard

MARK I AVIATION KU-BAND AND KA-BAND SATELLITE COMMUNICATION SYSTEM PART 2 ELECTRICAL INTERFACES AND FUNCTIONAL EQUIPMENT DESCRIPTION

2014-07-28
CURRENT
ARINC791P2-1
This document provides the interface definition of the Satcom system. Any signal crossing into or out of the communication system is documented to ease aircraft integration. Signals within the ARINC 791 Satcom system, and in particular, between the Modman and the Antenna Subsystem, are described to permit interchangeability between any Modman and any Antenna Subsystem.
Standard

ANALOG AND DISCRETE DATA CONVERTER SYSTEM

1981-09-10
CURRENT
ARINC729-1
This standard sets forth the characteristics of an ADDCS designed for installation in commercial transport aircraft. The ADDCS is intended to process, convert and multiplex analog and discrete signals in order to provide them in digital format described in ARINC 429.
Standard

AIR DATA AND INERTIAL REFERENCE SYSTEM (ADIRS)

2001-07-31
CURRENT
ARINC738A-1
This standard sets forth characteristics for a 4 MCU integrated digital ADIRS intended for installation in subsonic commercial transport aircraft. It is envisioned that the ADIRS will incorporate the capabilities of both an air data system and an inertial reference system.
Standard

AVIATION SATELLITE COMMUNICATION SYSTEM PART 2 SYSTEM DESIGN AND EQUIPMENT FUNCTIONAL DESCRIPTION

2012-06-27
CURRENT
ARINC741P2-11
This document describes the desired operational capability of the equipment as configured with the first generation Satellite Data Unit (SDU) to provide data and voice communications, as well as additional standards necessary to ensure interchangeability. Supplement 11 adds commentary on the commonality of physical interfaces between ARINC 741 systems defined for SwiftBroadband safety services and ARINC 741 systems defined only for the Inmarsat Classic Aero safety services. It adds the SwiftBroadband safety services to the SDU functional definition.
Standard

GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS) LANDING SYSTEM SENSOR UNIT (GLSSU)

2009-05-29
CURRENT
ARINC743B
This document sets forth the characteristics of the GNSS Landing System Sensor Unit (GLSSU) intended for installation in commercial aircraft. The intent of this document is to provide general and specific design guidance for the development of GLSSU for airline use. It describes the desired operational capability of the GLSSU and the standards necessary to ensure interchangeability.
Standard

AVIATION SATELLITE COMMUNICATION SYSTEM PART 1 AIRCRAFT INSTALLATION PROVISIONS

2012-06-26
CURRENT
ARINC741P1-14
This document defines the characteristics of first generation L-band satellite communication system installations including the avionics equipment. This document provides traditional form, fit, function, and interface standards for the installation of Satcom equipment for use in all types of aircraft. It defines the satellite data unit in a 6 MCU form factor. It also provides a summary description of each avionics component that would comply with this document. Supplement 14 adds references to ARINC Characteristic 781 and address equipment configurations and functionality associated with SwiftBroadband services.
X