Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2009-07-12
2009-01-2506
The Closed-Loop Air REvitalisation System ARES is a regenerative life support system for closed habitats. With regenerative processes the ARES covers the life support functions: 1. Removal of carbon dioxide from the spacecraft atmosphere via a regenerative adsorption/desorption process, 2. Supply of breathable oxygen via electrolysis of water, 3. Catalytic conversion of carbon dioxide with hydrogen to water and methane. ARES will be accommodated in a double ISPR Rack which will contain all main and support functions like power and data handling and process water management. It is foreseen to be installed onboard the International Space Station (ISS) in the Columbus Module in 2013. After an initial technology demonstration phase ARES shall continue to operate thus enhancing the capabilities of the ISS Life Support System as acknowledged by NASA [5]. Due to its regenerative processes ARES will allow a significant reduction of water upload to the ISS.
Technical Paper

Regenerative Trace Contaminant Control by Hydrophobic Molecular Sieves

1994-06-01
941400
At present, most of the trace contaminants in spacecraft are controlled by adsorption on activated charcoal filters which, after saturation, have to be exchanged. For longer duration mission, a regenerative trace contaminant control could practically eliminate the need for resupply of adsorbents. This study investigated the possibility of using hydrophobic zeolite molecular sieves for regenerative trace contaminant control. In small scale laboratory tests, different types of pelleted zeolite samples have been exposed to a model atmosphere containing representative trace contaminants. Co-adsorption capacities have been determined and the effect of parameters such as pellet size and shape, humidity level and flow rate has been studied. On the basis of this study, a regenerative trace contaminant adsorber applying two different molecular sieves is proposed.
Technical Paper

Development of Membrane Based Gas - Water Separation Technologies

1996-07-01
961406
Gas-water separation is a fundamental requirement during long term operation of manned and man-tended space systems. Two areas of specific concern are in cabin humidity and temperature control and in gas removal from cooling water loops. This paper addresses design and testing of breadboard models for a condensate separator and a gas trap. Both models are based on semi-permeable membranes as main functional elements. The breadboard designs are driven by the requirements of the COLUMBUS space station. The condensate separator shall remove heat as well as water vapour from a humid air flow. Water shall permeate through the membranes, that are separating the air from the cooling water. The gas trap shall filter gas bubbles in a water loop and release the gas from the loop. In addition it shall maintain dissolved gas levels well below saturation.
Technical Paper

The FAE Electrolyser Flight Experiment FAVORITE: Final Design and Pre-flight Ground Test Results

2005-07-11
2005-01-2809
FAVORITE (Fixed Alkaline Electrolyte Electrolyser Water Vapor Oxygen Reclamation In-flight Technology Demonstration Experiment) is an orbital flight experiment for a fixed alkaline electrolyte (FAE) electrolyser stack dedicated to generate oxygen and hydrogen out of water for life support and other applications. It was originally planned to fly in September 2003 on board the SpaceHab mission STS -118 with the space shuttle COLUMBIA flight ISS-13A.1, but after the tragic accident of COLUMBIA it was adapted to be launched with the unmanned Russian FOTON-M2 in May 2005. FAVORITE was therefore redesigned, manufactured and ground tested in 2004. This paper summarizes the pre-flight ground test results, reports on the lessons-learnt and gives an overview of the intended in-orbit and post-mission test program.
Technical Paper

The FAE Electrolyser Flight Experiment FAVORITE: Current Development Status and Outlook

2004-07-19
2004-01-2490
At the 2002 ICES, FAVORITE, the orbital flight experiment for a fixed alkaline electrolyte (FAE) electrolyser stack was presented. The planning at that time was to fly the experiment in September 2003 on board the Space-Hab mission STS-118 with the space shuttle COLUMBIA flight ISS-13A.1. Due to the tragic accident of COLUMBIA on Feb. 1st, 2003, these plans became obsolete and alternative launch opportunities were looked for. They were finally found with the unmanned Russian FOTON-M2, which is built by TsSKB-PROGRESS in Samara, Russia and scheduled for launch from the Baikonur cosmodrome in April 2005. Because of the switch from a manned to an unmanned mission and other operational constraints, FAVORITE had to be redesigned in several parts. This paper summarizes the objectives of the flight experiment and describes the required design changes. It also presents an overview of the actual development status as well as of the work ahead.
X