Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Measurement and Modeling of Rollover Airborne Trajectories

2009-04-20
2009-01-0109
Much has been written about reconstruction techniques and testing methods concerning vehicle rollovers. To date, most of the literature describes rollovers as one-dimensional events. Rollovers account for a disproportionate fraction of serious injuries and fatalities among all motor vehicle accidents. The three-dimensional nature of rollover sequences in which a rolling vehicle experiences multiple ground contacts contributes to the environment where such injuries occur. An analytical technique is developed to model the airborne segments of a rollover sequence as a parabolic path of the vehicle center of gravity. A formulation for the center of gravity descent from maximum elevation to full ground contact is developed. This formulation contains variables that may be readily determined from a thorough reconstruction. Ultimately, this formulation will also provide a vertical ground impact velocity at contact.
Technical Paper

Aerodynamic Drag Studies on Rolling Vehicles by Underwater Tow Testing

1986-03-01
860091
The aerodynamic drag of rolling vehicles was studied by towing pairs of side-by-side identical small-scale models in rolling contact with the bottom of a water-filled trough. An instrumented towbar measured the difference in the models' overall drag forces in order to determine the effect of changes in a model's configuration on its aerodynamic drag. The effects of wheel-rim covers, axle fairings, and wheel-housing volume on vehicle drag were studied with the test apparatus. The magnitude of the effects were well outside the range of experimental error, and correlated well with published results of similar studies performed in wind tunnels. Testing indicated that lift-induced changes in vehicle rolling resistance would not significantly alter results of tow testing under normal circumstances. Advantages of the underwater tow test include the ability to inexpensively simulate rotating wheels and to study the interaction between rotating wheels on a moving vehicle and the ground plane.
Technical Paper

Friction Applications in Accident Reconstruction

1983-02-01
830612
The determination of appropriate friction coefficient values is an important aspect of accident reconstruction. Tire-roadway friction values are highly dependent on a variety of physical factors. Factors such as tire design, side force limitations, road surface wetness, vehicle speed, and load shifting require understanding if useful reconstruction calculations are to be made. Tabulated experimental friction coefficient data are available, and may be improved upon in many situations by simple testing procedures. This paper presents a technical review of basic concepts and principles of friction as they apply to accident reconstruction and automobile safety. A brief review of test measurement methods is also presented, together with simple methods of friction measurement to obtain more precise values in many situations. This paper also recommends coefficient values for reconstruction applications other than tire- roadway forces.
X