Refine Your Search

Search Results

Viewing 1 to 19 of 19
Journal Article

LES Multi-Cycle Analysis of the Combustion Process in a Small SI Engine

2014-04-01
2014-01-1138
Large eddy simulations (LES) of a port-injected 4-valve spark ignited (SI) engine have been carried out with the emphasis on the combustion process. The considered operating point is close to full load at 3,500 RPM and exhibits considerable cyclic variation in terms of the in-cylinder pressure traces, which can be related to fluctuations in the combustion process. In order to characterize these fluctuations, a statistically relevant number of subsequent cycles, namely up to 40, have been computed in the multi-cycle analysis. In contrast to other LES studies of SI engines, here the G-equation (a level set approach) has been adopted to model the premixed combustion in the framework of the STAR-CD/es-ICE flow field solver. Tuning parameters are identified and their impact on the result is addressed.
Journal Article

Determination of Supersonic Inlet Boundaries for Gaseous Engines Based on Detailed RANS and LES Simulations

2013-09-08
2013-24-0004
The combustion of gaseous fuels like methane in internal combustion engines is an interesting alternative to the conventional gasoline and diesel fuels. Reasons are the availability of the resource and the significant advantage in terms of CO2 emissions due to the beneficial C/H ratio. One difficulty of gaseous fuels is the preparation of the gas/air mixtures for all operation points, since the volumetric energy density of the fuel is lower compared to conventional liquid fuels. Low-pressure port-injected systems suffer from substantially reduced volumetric efficiencies. Direct injection systems avoid such losses; in order to deliver enough fuel into the cylinder, high pressures are however needed for the gas injection which forces the fuel to enter the cylinder at supersonic speed followed by a Mach disk. The detailed modeling of these physical effects is very challenging, since the fluid velocities and pressure and velocity gradients at the Mach disc are very high.
Journal Article

Extending the NOx Reduction Potential with Miller Valve Timing Using Pilot Fuel Injection on a Heavy-Duty Diesel Engine

2014-10-13
2014-01-2632
New emission legislations applicable in the near future to sea-going vessels, off-road and off-highway vehicles require drastic nitric oxides emission reduction. A promising approach to achieve part of this decrease is charge air temperature reduction using Miller timing. However, it has been shown in literature that the reduction potential is limited, achieving a minimum in NOx emissions at a certain end-of-compression temperature. Further temperature reduction has shown to increase NOx emissions again. Some studies have shown that this increase is correlated to an increased amount of premixed combustion. In this work, the effects of pilot injection on engine out NOx emissions for very early intake valve closure (i.e. extreme Miller), high boost pressures and cold end-of-compression in-cylinder conditions are investigated. The experiments are carried out on a 3.96L single cylinder heavy-duty common-rail Diesel engine operating at 1000 rpm and at constant global air-to-fuel ratio.
Journal Article

Numerical Modelling and Experimental Characterization of a Pressure-Assisted Multi-Stream Injector for SCR Exhaust Gas After-Treatment

2014-10-13
2014-01-2822
Simulations for a pressure-assisted multi-stream injector designed for urea-dosing in a selective catalytic reduction (SCR) exhaust gas system have been carried out and compared to measurements taken in an optically accessible high-fidelity flow test rig. The experimental data comprises four different combinations of mass flow rate and temperature for the gas stream with unchanged injection parameters for the spray. First, a parametric study is carried out to determine the importance of various spray sub-models, including atomization, spray-wall interaction, buoyancy as well as droplet coalescence. Optimal parameters are determined using experimental data for one reference operating condition.
Journal Article

Generation of Turbulence in a RCEM towards Engine Relevant Conditions for Premixed Combustion Based on CFD and PIV Investigations

2017-09-04
2017-24-0043
The interaction of turbulent premixed methane combustion with the surrounding flow field can be studied using optically accessible test rigs such as a rapid compression expansion machine (RCEM). The high flexibility offered by such a test rig allows its operation at various thermochemical conditions at ignition. However, limitations inherent to such test rigs due to the absence of an intake stroke do not allow turbulence production as found in IC-engines. Hence, means to introduce turbulence need to be implemented and the relevant turbulence quantities have to be identified in order to enable comparability with engine relevant conditions. A dedicated high-pressure direct injection of air at the beginning of the compression phase is considered as a measure to generate adjustable turbulence intensities at spark timing and during the early flame propagation.
Journal Article

Fundamental Aspects of Jet Ignition for Natural Gas Engines

2017-09-04
2017-24-0097
Large-bore natural gas engines may use pre-chamber ignition. Despite extensive research in engine environments, the exact nature of the jet, as it exits the pre-chamber orifice, is not thoroughly understood and this leads to uncertainty in the design of such systems. In this work, a specially-designed rig comprising a quartz pre-chamber fit with an orifice and a turbulent flowing mixture outside the pre-chamber was used to study the pre-chamber flame, the jet, and the subsequent premixed flame initiation mechanism by OH* and CH* chemiluminescence. Ethylene and methane were used. The experimental results are supplemented by LES and 0D modelling, providing insights into the mass flow rate evolution at the orifice and into the nature of the fluid there. Both LES and experiment suggest that for large orifice diameters, the flow that exits the orifice is composed of a column of hot products surrounded by an annulus of unburnt pre-chamber fluid.
Journal Article

Experimental and Numerical Investigation of the Engine Operational Conditions’ Influences on a Small Un-Scavenged Pre-Chamber’s Behavior

2017-09-04
2017-24-0094
Despite significant benefits in terms of the ignition enhancement, the strength and timing of the turbulent flame jets subsequently issuing into the main chamber strongly depend on the pre-chamber combustion process and, thus, are sensitive to the specific engine operating conditions it experienced. This poses considerable difficulties in optimizing engine operating conditions as well as controlling engine performance. This paper investigates the influence of engine operating conditions on the pre-chamber combustion event using both experimental and numerical methods. A miniaturized piezo-electric pressure transducer was designed to be placed inside the engine cylinder head to record the pre-chamber inner volume pressure, in addition to conventional pressure indication inside the main chamber.
Journal Article

The Effect of Cycle-to-Cycle Variations on the NOx-SFC Tradeoff in Diesel Engines under Long Ignition Delay Conditions

2017-09-04
2017-24-0100
Cycle-to-cycle variations in internal combustion engines are known to lead to limitations in engine load and efficiency, as well as increases in emissions. Recent research has led to the identification of the source of cyclic variations of pressure, soot and NO emissions in direct injection common rail diesel engines, when employing a single block injection and operating under long ignition delay conditions. The variations in peak pressure arise from changes in the diffusion combustion rate, caused by randomly occurring in-cylinder pressure fluctuations. These fluctuations result from the excitation of the first radial mode of vibration of the cylinder gases which arises from the rapid premixed combustion after the long ignition delay period. Cycles with high-intensity fluctuations present faster diffusion combustion, resulting in higher cycle peak pressure, as well as higher measured exhaust NO concentrations.
Technical Paper

The Effects of Intake Pressure on In-Cylinder Gas Velocities in an Optically Accessible Single-Cylinder Research Engine

2020-04-14
2020-01-0792
Particle image velocimetry measurements of the in-cylinder flow in an optically accessible single-cylinder research engine were taken to better understand the effects of intake pressure variations on the flow field. At a speed of 1500 rpm, the engine was run at six different intake pressure loads from 0.4 to 0.95 bar under motored operation. The average velocity fields show that the tumble center position is located closer to the piston and velocity magnitudes decrease with increasing pressure load. A closer investigation of the intake flow near the valves reveals sharp temporal gradients and differences in maximum and minimum velocity with varying intake pressure load which are attributed to intake pressure oscillations. Despite measures to eliminate acoustic oscillations in the intake system, high-frequency pressure oscillations are shown to be caused by the backflow of air from the exhaust to the intake pipe when the valves open, exciting acoustic modes in the fluid volume.
Technical Paper

Combustion Features and Emissions of a DI-Diesel Engine with Air Path Optimization and Common Rail Fuel Injection

1998-08-11
981931
Emission and performance parameters of a medium size, and medium speed D.I. diesel engine equipped with a Miller System, a new developed High Pressure Exhaust Gas Recirculation System (HPEGR), a Common Rail (CR) system and a Turbocharger with Variable Turbine Geometry (VTG) have been measured and compared to the standard engine. While power output, fuel consumption, soot and other emissions are kept constant, nitric oxide emissions could be reduced by 30 to 50% depending on load and for the optimal combination of methods. Heat release rate analysis provides the reasons for the optimised engine behaviour in terms of soot and NOx emissions: The variable Nozzle Turbocharger helps deliver more oxygen to the combustion process (less soot) and lower the peak gas temperature (less NOx).
Technical Paper

Influence of Water-Diesel Fuel Emulsions and EGR on Combustion and Exhaust Emissions of Heavy Duty DI-Diesel Engines equipped with Common-Rail Injection System

2003-10-27
2003-01-3146
In this paper we investigate the effect of the introduction of water in the combustion chamber of a DI-diesel engine on combustion characteristics and pollutant formation, by using water-diesel fuel emulsions with three distinct water amounts (13%, 21% and 30%). For the measurements we use a modern 4-cylinder DI-diesel engine with high-pressure common rail fuel injection and EGR system. The engine investigations are conducted at constant speed in different operating points of the engine map with wide variations of injection setting parameters and EGR rate. The main concern refers to the interpretation of both measured values and relevant thermodynamic variables, which are computed with analytical instruments (heat release rate, ignition delay, reciprocal characteristic mixing time, etc). The analysis of the measured and computed data shows clear trends and detailed evaluations on the behavior of water-diesel fuel emulsions in the engine process are possible.
Technical Paper

Influence of Hydrogen-Rich-Gas Addition on Combustion, Pollutant Formation and Efficiency of an IC-SI Engine

2004-03-08
2004-01-0972
The addition of hydrogen-rich gas to gasoline in an Internal Combustion Engine seems to be particularly suitable to arrive at a near-zero emission Otto engine, which would be able to easily meet the most stringent regulations. In order to simulate the output of an on-board reformer that partially oxidizes gasoline, providing the hydrogen-rich gas, a bottled gas has been used. Detailed results of our measurements are here shown, such as fuel consumption, engine efficiency, exhaust emissions, analysis of the heat release rates and combustion duration, for both pure gasoline and blends with reformer gas. Additionally simulations have been performed to better understand the engine behaviour and NOx formation.
Technical Paper

Influence of Fuel Composition and Combustion Process on Thermodynamic Parameters of SI Engines

2012-09-10
2012-01-1633
In the field of heavy-duty applications almost all engines apply the compression ignition principle, spark ignition is used only in the niche of CNG engines. The main reason for this is the high efficiency advantage of diesel engines over SI engines. Beside this drawback SI engines have some favorable properties like lower weight, simple exhaust gas aftertreatment in case of stoichiometric operation, high robustness, simple packaging and lower costs. The main objective of this fundamental research was to evaluate the limits of a SI engine for heavy-duty applications. Considering heavy-duty SI engines fuel consumption under full load conditions has a high impact on CO₂ emissions. Therefore, downsizing is not a promising approach to improve fuel consumption and consequently the focus of this work lies on the enhancement of thermal efficiency in the complete engine map, intensively considering knocking issues.
Technical Paper

Reduction of NOx Emissions of D. I. Diesel Engines by Application of the Miller-System: An Experimental and Numerical Investigation

1996-02-01
960844
Emissions and performance parameters of a medium size, medium speed D.I. diesel engine with increased charge air pressure and reduced but fixed inlet valve opening period have been measured and compared to the standard engine. While power output and fuel consumption are slightly improved, nitric oxide emissions can be reduced by up to 20%. The measurements confirm the results of simulations for both performance and emissions, for which a quasidimensional model including detailed chemistry for nitric oxide prediction has been developed.
Technical Paper

A Computational Investigation of Unsteady Heat Flux Through an I.C. Engine Wall Including Soot Layer Dynamics

1997-02-24
970063
This paper deals with the influence of a wall soot layer of varying thickness on the unsteady heat transfer between the fluid and the engine cylinder wall during a full cycle of a four-stroke Diesel engine operation. For that purpose a computational investigation has been carried out, using a one-dimensional model of a multi-layer solid wall for simulating the transient response within the confinement of the combustion chamber. The soot layer is thereby of varying thickness over time, depending on the relative rates of deposition and oxidation. Deposition is accounted for due to a thermophoretic mechanism, while oxidation is described by means of an Arrhenius type expression. Results of the computations obtained so far show that the substrate wall temperature has a significant effect on the soot layer dynamics and thus on the wall heat flux to the combustion chamber wall.
Technical Paper

THE Post Injection: Coalescence of 3D CFD-CMC Simulation, 2D Visualizations in a Constant Volume Chamber and Application in a Modern Passenger Car Diesel Engine

2015-09-06
2015-24-2515
Past research has shown that post injections have the potential to reduce Diesel engine exhaust PM concentration without any significant influence in NOx emissions. However, an accurate, widely applicable rule of how to parameterize a post injection such that it provides a maximum reduction of PM emissions does not exist. Moreover, the underlying mechanisms are not thoroughly understood. In past research, the underlying mechanisms have been investigated in engine experiments, in constant volume chambers and also using detailed 3D CFD-CMC simulations. It has been observed that soot reduction due to a post injection is mainly due to two reasons: increased turbulence from the post injection during soot oxidation and lower soot formation due to lower amount of fuel in the main combustion at similar load conditions. Those studies do not show a significant temperature rise caused by the post injection.
Technical Paper

Experimental Investigation on the Gas Jet Behavior for a Hollow Cone Piezoelectric Injector

2014-10-13
2014-01-2749
Direct injection of natural gas in engines is considered a promising approach toward reducing engine out emissions and fuel consumption. As a consequence, new gas injection strategies have to be developed for easing direct injection of natural gas and its mixing processes with the surrounding air. In this study, the behavior of a hollow cone gas jet generated by a piezoelectric injector was experimentally investigated by means of tracer-based planar laser-induced fluorescence (PLIF). Pressurized acetone-doped nitrogen was injected in a constant pressure and temperature measurement chamber with optical access. The jet was imaged at different timings after start of injection and its time evolution was analyzed as a function of injection pressure and needle lift.
Technical Paper

Experimental Investigation on the Characteristics of Sprays Representative for Large 2-Stroke Marine Diesel Engine Combustion Systems

2015-09-01
2015-01-1825
Fuel spray propagation and its morphology are important aspects for the in-cylinder mixture preparation in Diesel engines. Since there is still a lack of suitable measurements with regard to large 2-stroke marine Diesel engines combustion systems, a comprehensive data set of spray characteristics has been investigated using a test facility reflecting the specific features of such combustion systems. The spray penetration, area and cone angle were analysed for a variation of gas density (including the behaviour at evaporation and non-evaporating conditions), injection pressure and nozzle diameter. Moreover, spray and swirl flow interaction as well as fuel quality influences have been studied. To analyse the impacts and effects of each measured parameter, an empirical correlation for the spray penetration has been derived and discussed for all measurements presented.
Technical Paper

Investigation of the Ignition Process of Pilot Injections Using CFD

2019-09-09
2019-24-0129
State of the art high-pressure fuel injectors offer the ability to inject multiple times per cycle, and can reach very low fuel amounts per injection event. This behaviour allows the application of pilot injections in diesel engine applications or dual fuel engines. In both diesel and dual fuel engines, the amount of pilot fuel affects the engine efficiency. The understanding of the underlying ignition mechanism of the pilot fuel is required to optimize injection parameters and the engines’ fuel consumption. The present work focuses on the differences of ignition mechanisms between long and short injections. The investigation has been performed numerically, using CFD with a well-proven combustion model. The setup used employs a well characterized single orifice injector, injecting into a high temperature, pressurized environment with a composition of 15% oxygen.
X