Refine Your Search

Search Results

Viewing 1 to 11 of 11
Standard

Glossary of Automotive Inflatable Restraint Systems

2015-04-09
CURRENT
J1538_201504
The terms included in the Glossary are general in nature and may not apply to all manufacturers’ systems. All terms in Section 3 apply to automotive inflatable restraint systems in general which are initiated by an electric or mechanical stimulus upon receipt of a signal from a sensor. These terms are intended to reflect existing designs and the Glossary will be updated as information on other types of systems becomes available. Appendix A is included to identify terminology that is no longer in common use or specifically applicable to inflatable restraint systems, but was published in the December 2001 version of SAE J1538.
Standard

Glossary of Automotive Inflatable Restraint Systems

2010-01-14
HISTORICAL
J1538_201001
The terms included in the Glossary are general in nature and may not apply to all manufacturers’ systems. All terms in Section 3 apply to automotive inflatable restraint systems in general which are initiated by an electric or mechanical stimulus upon receipt of a signal from a sensor. These terms are intended to reflect existing designs and the Glossary will be updated as information on other types of systems becomes available. Appendix A is included to identify terminology that is no longer in common use or specifically applicable to inflatable restraint systems, but was published in the December 2001 version of SAE J1538.
Standard

Procedure and Instrumentation for Measuring Acoustic Impulses from Deployment of Automotive Inflatable Devices

2012-11-01
HISTORICAL
J247_201211
The purpose of this SAE Recommended Practice is to provide guidelines for selection of transducers, data acquisition systems, and other instrumentation as well as analysis methods to help ensure proper measurement and evaluation of acoustic impulses in automobiles. While this Recommended Practice focuses on automotive inflatable devices, such as, frontal airbag systems, pretensioners, inflatable curtains, side airbags, etc, it can be used for measurement of other impulsive sounds in a vehicle if needed. The objective is to achieve uniformity in instrumentation practice and reporting of test measurements. Use of this recommended practice should provide a basis for meaningful comparisons of test results from different sources. This recommended practice specifies procedures for static measurement of acoustic impulses, but due to the much more complicated nature of crash testing, does not specify procedures for measuring impulses in vehicles during crash tests.
Standard

Procedure and Instrumentation for Measuring Acoustic Impulses from Deployment of Automotive Inflatable Devices

2013-04-03
CURRENT
J247_201304
The purpose of this SAE Recommended Practice is to provide guidelines for selection of transducers, data acquisition systems, and other instrumentation as well as analysis methods to help ensure proper measurement and evaluation of acoustic impulses in automobiles. While this Recommended Practice focuses on automotive inflatable devices, such as, frontal airbag systems, pretensioners, inflatable curtains, side airbags, etc., it can be used for measurement of other impulsive sounds in a vehicle if needed. The objective is to achieve uniformity in instrumentation practice and reporting of test measurements. Use of this recommended practice should provide a basis for meaningful comparisons of test results from different sources. This recommended practice specifies procedures for static measurement of acoustic impulses, but due to the much more complicated nature of crash testing, does not specify procedures for measuring impulses in vehicles during crash tests.
Standard

Impulse Noise from Automotive Inflatable Devices

2003-11-06
HISTORICAL
J2531_200311
New methods are available to assist in evaluating the risk of impulse noise-induced hearing loss from inflatable devices, for example, airbags and seat belt pretensioners. This document presents some background on impulse noise measurement techniques and assessment criteria. Related information relative to test details, for example, preamplifier specifications and filtering methods and criteria, will be discussed in a future recommended practice.
Standard

Impulse Noise from Automotive Inflatable Devices

2016-04-29
CURRENT
J2531_201604
New methods are available to assist in evaluating the risk of impulse noise-induced hearing loss from inflatable devices, for example, airbags and seat belt pretensioners. This document presents some background on impulse noise measurement techniques and assessment criteria. Related information relative to test details, for example, preamplifier specifications and filtering methods and criteria, will be discussed in a future recommended practice.
Standard

Impulse Noise from Automotive Inflatable Devices

2011-03-06
HISTORICAL
J2531_201103
New methods are available to assist in evaluating the risk of impulse noise-induced hearing loss from inflatable devices, for example, airbags and seat belt pretensioners. This document presents some background on impulse noise measurement techniques and assessment criteria. Related information relative to test details, for example, preamplifier specifications and filtering methods and criteria, will be discussed in a future recommended practice.
Standard

SAE RESTRAINT SYSTEMS EFFLUENT TEST PROCEDURE

1996-12-01
HISTORICAL
J1794_199612
This SAE Recommended Practice describes a method to collect, identify, and quantify effluent resulting from deployment of in-vehicle stored energy restraint systems. Deployment and collection is completed in a 2.83 m3 (100 ft3 ) chamber. This procedure is written as a guideline for the identification and quantification of both particulate effluent (size, concentration, and composition) and gaseous effluent (concentration and composition). The intent of this procedure is to describe and recommend testing methods and not to establish limits for the effluent. This procedure should be used in conjunction with performance specifications from the customer and/or manufacturer of the device(s) being tested. This is a general procedure for repetitive and comparative testing, and suggests only general guidelines for the safe conduct of tests and reliable data correlation.
Standard

Airbag Inflator Ballistic Tank Test Procedure Gas Generators Used In Inflatable Restraint Systems

2001-10-31
HISTORICAL
J2238_200110
This SAE Recommended Practice establishes a ballistic tank test procedure for evaluating inflator assemblies used in inflatable restraint systems. It is intended to be a general procedure for repetitive testing and suggests only general guidelines for the safe conduct of tests and data correlation. Uniform test requirements, test procedures, and data recording requirements are specified. The intent of the document is to provide a procedure employing a ballistic tank test method for determining the ability of an inflator to meet requirements for deploying inflatable restraint systems. A ballistic tank test is described which will yield repeatable and comparable results for evaluating a given inflator configuration's pressure output versus time. Use of the ballistic tank test for comparison of various inflator configurations may be of limited value due to differences in gas temperature and mass flow effects on airbag performance as it relates to occupant protection.
Standard

Airbag Module Deployment Test Procedure

2011-01-21
CURRENT
J1630_201101
This SAE Recommended Practice describes a method to be used for the static deployment of airbag module assemblies. The results obtained from the deployment tests will be used to verify compliance with design requirements and/or specifications, and for other engineering purposes such as module performance comparisons, and/or CAE input or validation. The purpose for this procedure is to describe recommended test methods to ensure, to the extent possible, reliable and reproducible test results for driver airbag modules, passenger airbag modules, or other airbag modules (e.g., side airbags, roof rail airbags, knee bolster airbags, etc.). Performance limits or acceptance criteria are not established as they are typically defined based on specific vehicle design requirements and/or manufacturer specifications. It is intended to be a general procedure for repetitive testing and suggests only general guidelines for the safe conduct of tests and reliable data correlation.
X