Refine Your Search

Topic

Search Results

Technical Paper

Rear Stiffness Coefficients Derived from Barrier Test Data

1991-02-01
910120
Rear impacts in the crash test data base compiled by the NHTSA are analyzed and compared to the CRASH3 rear stiffness coefficients. The CRASH3 values do not represent the test data adequately. This is because the values were derived from limited data, and because some of the rear moving barrier test data were miscoded as fixed barrier tests. A review of the larger NHTSA data base does not support the CRASH3 assumption that vehicles of similar size (wheelbase) have similar rear stiffness characteristics. Therefore, it is important when reconstructing individual accidents to use crash test data specific to the vehicles involved. Repeated rear fixed barrier test data on four vehicles are analyzed to study the data trend at speeds below and above the NHTSA test data. Constant stiffness and constant force models are compared and a combination of the two is shown to fit available test data.
Technical Paper

Occupant Protection in Rear-end Collisions: II. The Role of Seat Back Deformation in Injury Reduction

1991-10-01
912914
The National Highway Traffic Safety Administration (NHTSA) has recently opened a rulemaking docket seeking comments on the design of automobile seats and their performance in rear Impacts. There are two philosophies of seat design: one advocates rigid seats, the other advocates seats which yield in a controlled manner. A review of the legislative history of seat back design standards indicates that yielding seats have historically been considered a better approach for passenger cars. The design characteristics of current production automobile seats are evaluated and show no significant changes over the past three decades. Concerns about the performance of rigid seat backs in real world rear impacts are discussed, specifically increased injury exposure due to ramping, rebound and out-of-position occupants.
Technical Paper

The Assessment of the Societal Benefit of Side Impact Protection

1990-02-01
900379
This paper summarizes work relating to the assessment of societal benefits of side impact protection. National Crash Severity Study (NCSS) and National Accident Sampling System (NASS) accident data technigues were reviewed with respect to the reliability of output information concerning the distribution of side impact accidents by impact severity and relationships between injury and impact severity. NCSS and NASS are confounded by errors and inadequacies, primarily as a result of improper accident reconstruction based upon the CRASH computer program. Based on review of several sample cases, it is believed that the NCSS/NASS files underestimate Lower severities and overestimate higher severities in side impact, with delta-V errors probably overestimated by 25-30 percent in the case of the more serious accidents. These errors cannot be properly quantified except on a case-by-case basis. They introduce unknown biases into NCSS/NASS.
Technical Paper

Rollover Testing of Sport Utility Vehicles (SUVs) on an Actual Highway

2010-04-12
2010-01-0521
A follow-up study on rollover testing was conducted along a section of a remote rural highway using six full-size sport utility vehicles (SUVs) of differing makes and models. The vehicles were instrumented and towed to highway speeds before being released, at which point an automated steering controller steered the vehicles through a series of maneuvers intended to result in rollover. A total of eight tests were conducted and documented, six rollovers and two non-rollover events. The six rollover events provide trip and tumbling conditions for each vehicle. The two non-rollover attempts produced cornering tire marks and allowed for the documentation of near roll conditions for the two out-of-control vehicles. All eight tests presented are instrumented real-world type tests that were later correlated based upon the data obtained.
Technical Paper

Non-Linear Damage Analysis in Accident Reconstruction

2001-03-05
2001-01-0504
Frontal, side, rear, pole and offset car to car data sets are examined using familiar damage analysis models: constant stiffness, bilinear stiffness, and force saturation. In addition to these, a non-linear power-law formulation is introduced and compared to the others. The power-law provides a nonlinear stiffness coefficient that transitions between a constant force model and constant stiffness model as the power goes from 0 to 1. It also provides a continuous, single valued function that is easily integrated and used in the analysis. Power-law nonlinearity can be used to smoothly fit low through high crush data. Geometric integral parameters are developed which represent irregular crush profiles. These permit graphical comparison of tests with non-uniform crush data (such as offset, side, and narrow object) with uniform crush test data. They also provide a means for comparison of accident damage with the test data set.
Technical Paper

The Accuracy and Usefulness of SMAC

1978-02-01
780902
Computer-aided crash reconstruction has become common-place in the automotive safety profession, primarily because of widespread distribution of software under public auspices. The SMAC (Simulation Model of Automobile Collisions) program, for instance, is available through NHTSA at nominal cost. This paper exhibits some of the limitations and strengths of accident reconstruction simulations, with illustrations and emphasis drawn from the SMAC program. In particular, some coarse physical approximations used and some coding errors incurred in the formulation of SMAC are discussed, together with their respective effects on the accuracy of prediction. Revisions of the basic SMAC coding have been developed at BYU to overcome these shortcomings. Results of uncorrected and revised SMAC simulations are demonstrated by comparison with the physical theory. Comments regarding a new SMAC program just completed under U.S. Government contract are presented where appropriate.
Technical Paper

Optimum Restraint Parameters for Bounded Occupant Motion in Decelerating Vehicles

1970-02-01
700450
The problem of occupant impact severity reduction by effective use of available space was studied using a two-degree-of-freedom linear mathematical model implemented on a digital computer. An optimum-search method was employed to find the best values of stiffness and damping terms for linear lap and shoulder “belts” corresponding to specific vehicle pulseforms and geometry at speeds 10 to 60 mph. System performance was evaluated on the basis of a severity index comparing occupant deceleration data, and upon penalties imposed for occupant contact with vehicle interior structures. Comparison to biomechanical data indicates that the optimal linear system for 60 mph could produce serious injuries. Comparison to theoretical optimum values indicates considerable room for improvement, using active or nonlinear passive systems.
Technical Paper

Proportional Braking of Solid-Frame Vehicles

1971-02-01
710047
An engineering analysis of vehicle braking is presented in terms of the utilization of available road friction. Physical relations are derived which allow the determination of optimum brake force distribution on front and rear wheels as a function of axle loading. Ideal braking distribution curves are shown for a typical vehicle in the loaded and unloaded conditions. A technique is suggested for rational design of braking system parameters. It is applied to the case of a two-stage proportioning system, and is validated by experimental data from tests using a specially equipped light truck. It is concluded that a proper design analysis can establish a combination of braking system parameters which results in improved utilization of available friction. A simple, self-adjusting brake proportioning system can be a highly cost-effective safety device for truck use.
Technical Paper

Improvements to the SMAC Program

1983-02-01
830610
The Simulation Model of Automobile Collisions (SMAC) computer program has seen more than a decade of use under NHTSA auspices. Although SMAC has proven itself to be a useful investigative tool, the program has several shortcomings which either have been addressed by the authors or need to be addressed by further work. This paper presents the results of our ongoing work to improve SMAC and our recommendations for further work. Those model features discussed herein which either have been or need to be revised consist of (1) the calculation of crush forces when penetration is deep (2) the representation of the vehicles' crush pressure vs deflection relationship and (3) the distribution of tire normal forces in reaction to pitch and roll. An input interfacing program called SMACED has been written and is discribed. This editing program greatly simplifies the use of SMAC and will be found particularly useful for the inexperienced or infrequent SMAC user.
Technical Paper

Design, Development and Testing of a Load-Sensing Crash Dummy Face

1984-02-01
840397
This project covers one facet of a program to develop a mechanical model for characterizing the time history of local forces on the zygomatic, maxillary and mandible regions of the human face during a frontal collision. Two mechanical devices to measure the forces on crash dummies during testing were designed, constructed and tested. The devices employed cantilever beams equipped with strain gauges. Both devices were subjected to a series of drop tests onto various materials. Time histories were compared to those obtained from cadaver experiments. While the data obtained from this testing appears to be similar to the cadaver data, further improvements and modifications will make the model much more useful.
Technical Paper

Hydrogen Storage In Vehicles--An Operational Comparison Of Alternative Prototypes

1976-02-01
760570
Performance and operational characteristics of several prototype containers for storing hydrogen are described. A cryogenic vessel and three metal hydride containers of similar design but different size have been used in automotive service. Hydrogen release rates were controlled to match with engine demand. All prototypes were able to sustain a steady state flow rate sufficient for vehicle operation at normal cruise speed. In order to illustrate the principle of hydride operation, a pressure--temperature history for recharge of a small portable hydride tank is given along with several discharge curves with and without heating.
Technical Paper

Thoracic Impact Response of Live Porcine Subjects

1976-02-01
760823
Five anesthetized porcine subjects were exposed to blunt thoracic impact using a 21 kg mass with a flat contact surface traveling at 3.0 to 12.2 m/s. The experiments were conducted to assess the appropriateness of studying in vivo mechanical and physiological response to thoracic impact in a porcine animal model. A comprehensive review of comparative anatomy between the pig and man indicates that the cardiovascular, respiratory and thoracic skeletal systems of the pig are anatomically and functionally a good parallel of similar structures in man. Thoracic anthropometry measurements document that the chest of a 50 to 60 kg pig is similar to the 50th percentile adult male human, but is narrower and deeper. Peak applied force and chest deflection are in good agreement between the animal's responses and similar impact severity data on fresh cadavers.
Technical Paper

A Perspective on Automobile Crash Fires

1985-02-25
850092
The relatively rare occurrence of injury or fatality in fuel-fed fires has received considerable attention in automotive safety rulemaking and products liability litigation. The literature related to fatalities associated with fire is confirmed by recent FARS data, and there are no reliable field data which confirm a need for further injury-reducing effect related to FMVSS 301. NHTSA has acknowledged this by removing crash fire rulemaking from its priorities plan. The police-reported crash fire data now available must be supplemented with in-depth investigation by trained teams before informed judgements can be made regarding further safety improvements with respect to crash fire injury.
Technical Paper

The VTS Single-Vehicle Trajectory Simulation

1985-02-25
850252
A vehicle trajectory simulation called VTS has been developed as an aid for reconstruction of automobile accidents. The two dimensional vehicle has longitudinal, lateral and yaw degrees of freedom, a point mass at the center of gravity) yaw inertia about the center of gravity and four contact points (“tires”) which can be arbitrarily positioned. No collision or aerodynamic forces are modeled. The traction surface is represented as a flat plane with a specified nominal friction coefficient. Several quadrilateral “patches” may be applied to the surface to change the friction coefficient in specific regions. User vehicle control consists of timewise tables for steering angle and traction coefficient for each of the four wheels. When used individually or in conjunction with other computer modules, VTS provides a convenient, accurate modular tool for trajectory simulation.
Technical Paper

The “IMPAC” Program for Collision Analysis

1987-02-01
870046
The “IMPAC” collision algorithm is a comparatively simple application of momentum conservation in a collision. This 2-D model may be used in a number of applications: to reconstruct car to car collisions, to study car to barrier collisions, to evaluate proposed crash test conditions, to refine and check reconstruction calculations made using the “damage” option of “Crash3”, or as a predictor for the “SMAC” program to reduce the number of runs required to obtain a reconstruction. The program also provides a means of rapidly evaluating questions of sensitivity of results to changes in input. The essential features of the model are reviewed herein and two collision configurations are examined. The most recent version of the program provides output for purposes of comparison with the method employed by the “Damage” option of the “Crash3” program.
Technical Paper

Occupant Protection in Rear-end Collisions: I. Safety Priorities and Seat Belt Effectiveness

1991-10-01
912913
Recent detailed field accident data are examined with regard to injuries associated with rear impacts. The distribution of “Societal Harm” associated with various injury mechanisms is presented, and used to evaluate the performance of current seat back and restraint system designs. Deformation associated with seat back yield is shown to be beneficial in reducing overall Societal Harm in rear impacts. The Societal Harm associated with ejection and contact with the vehicle rear interior (the two injury mechanisms addressed by a rigid seat approach), is shown to be minimal. The field accident data also confirm that restraint usage in rear impacts has a substantial injury-reducing effect. Laboratory tests and computer simulations were run to investigate the mechanism by which seat belts protect occupants in rear impacts.
Technical Paper

Injury and Intrusion in Side Impacts and Rollovers

1984-02-01
840403
The relationship between occupant crash injury and occupant compartment intrusion is seen in the perspectives of the velocity-time analysis and the NCSS statistical data for two important accident injury modes, lateral and rollover collisions. Restraint system use, interior impacts, and vehicle design features are considered. Side impact intrusion is analyzed from physical principles and further demonstrated by reference to staged collisions and NCSS data. Recent publications regarding findings of the NCSS data for rollovers, as well as the NCSS data itself, are reviewed as a background for kinematic findings regarding occupant injury in rollovers with roof crush.
Journal Article

Rollover Testing on an Actual Highway

2009-04-20
2009-01-1544
Three full-size sedans were towed to highway speeds along a section of a remote rural highway. Upon release, an automated steering controller steered the vehicles through a series of maneuvers intended to result in rollover. Repeated attempts to roll each vehicle were made until rollover resulted. Non-rollover attempts produced cornering tire marks by the out-of-control vehicle. Out of numerous runs, 3 rollover and 2 non-rollover tests were selected for documentation and analysis. One additional steer-induced rollover test is presented that was conducted along a simulated road section at a closed test-track facility. All six tests presented are instrumented real-world type tests that were later reconstructed based upon the data obtained from on-board instrumentation, videotape, survey measurements, and still photographs obtained of each respective test.
Technical Paper

Narrow Object Impact Analysis and Comparison with Flat Barrier Impacts

2002-03-04
2002-01-0552
Crash behavior in narrow object impacts was examined for the perimeter of a 4-door full size sedan. Additional test data was obtained for this vehicle by impacting four sedans with a rigid pole mounted to a massive moving barrier (MMB) in the front, right front oblique, right side, and rear. The vehicles were stationary when impacted by the MMB. Two of the four cars were repeatedly impacted with increasing closing speeds in the front and side, respectively. Each test was documented and the resulting deformation accurately measured. The stiffness characteristics were calculated for the perimeter of car and were presented using the power law damage analysis model. The vehicle's crash performance in these pole tests was compared to that of NHTSA's flat fixed barrier tests (deformable and non-deformable) for the front, side, and rear of this vehicle.
X