Refine Your Search

Topic

Search Results

Journal Article

An Eyellipse for Rear Seats with Fixed Seat Back Angles

2011-04-12
2011-01-0596
This paper describes the development of the fixed seat eyellipse in the October 2008 revision of SAE Recommended Practice J941. The eye locations of 23 men and women with a wide range of stature were recorded as they sat in each of three second-row bench seats in a laboratory mockup. Testing was conducted at 19-, 23-, and 27-degree seat back angles. Regression analysis demonstrated that passenger eye location was significantly affected by stature and by seat back angle. The regression results were used to develop an elliptical approximation of the distribution of adult passenger eye locations, applying a methodology previously used to develop the driver eyellipse in SAE J941-2002.
Journal Article

Driver Preference for Fore-Aft Steering Wheel Location

2013-04-08
2013-01-0453
The fore-aft location of the steering wheel relative to the pedals is a critical determinant of driving posture and comfort. Current SAE practices lack quantitative guidance on steering wheel positioning. This paper presents a model of subjective preference for fore-aft steering wheel position across a range of seat heights. Sixty-eight men and women evaluated the steering wheel positions in a total of 9 package conditions differentiated by seat height and fore-aft steering wheel position. Numerical responses were given on a 7-point scale anchored with the words “Too Close”, “Just Right”, and “Too Far”. A statistical analysis of the results demonstrated that the preferred fore-aft steering wheel position was affected by seat height and driver stature. An ordinal logistic regression model was created that predicts the distribution of subjective responses to steering wheel location. The model can be used to calculate the preferred steering wheel position for individuals or populations.
Technical Paper

Biomechanical Investigation of Airbag-Induced Upper-Extremity Injuries

1997-11-12
973325
The factors that influence airbag-induced upper-extremity injuries sustained by drivers were investigated in this study. Seven unembalmed human cadavers were used in nineteen direct-forearm-interaction static deployments. A single horizontal-tear-seam airbag module and two different inflators were used. Spacing between the instrumented forearm and the airbag module was varied from 10 cm to direct contact in some tests. Forearm-bone instrumentation included triaxial accelerometry, crack detection gages, and film targets. Internal airbag pressure was also measured. The observed injuries were largely transverse, oblique, and wedge fractures of the ulna or radius, or both, similar to those reported in field investigations. Tears of the elbow joint capsule were also found, both with and without fracture of the forearm.
Technical Paper

Development of an Improved Driver Eye Position Model

1998-02-23
980012
SAE Recommended Practice J941 describes the eyellipse, a statistical representation of driver eye locations, that is used to facilitate design decisions regarding vehicle interiors, including the display locations, mirror placement, and headspace requirements. Eye-position data collected recently at University of Michigan Transportation Research Institute (UMTRI) suggest that the SAE J941 practice could be improved. SAE J941 currently uses the SgRP location, seat-track travel (L23), and design seatback angle (L40) as inputs to the eyellipse model. However, UMTRI data show that the characteristics of empirical eyellipses can be predicted more accurately using seat height, steering-wheel position, and seat-track rise. A series of UMTRI studies collected eye-location data from groups of 50 to 120 drivers with statures spanning over 97 percent of the U.S. population. Data were collected in thirty-three vehicles that represent a wide range of vehicle geometry.
Technical Paper

Assessing the Importance of Motion Dynamics for Ergonomic Analysis of Manual Materials Handling Tasks using the AnyBody Modeling System

2007-06-12
2007-01-2504
Most current applications of digital human figure models for ergonomic assessments of manual tasks focus on the analysis of a static posture. Tools available for static analysis include joint-specific strength, calculation of joint moments, balance maintenance capability, and low-back compression or shear force estimates. Yet, for many tasks, the inertial loads due to acceleration of body segments or external objects may contribute significantly to internal body forces and tissue stresses. Due to the complexity of incorporating the dynamics of motion into analysis, most commercial software packages used for ergonomic assessment do not have the capacity to include dynamic effects. Thus, commercial human modeling packages rarely provide an opportunity for the user to determine if a static analysis is sufficient.
Technical Paper

An Integrated Model of Gait and Transition Stepping for Simulation of Industrial Workcell Tasks

2007-06-12
2007-01-2478
Industrial tasks performed by standing workers are among those most commonly simulated using digital human models. Workers often walk, turn, and take acyclic steps as they perform these tasks. Current h uman modeling tools lack the capability to simulate these whole body motions accurately. Most models simulate walking by replaying joint angle trajectories corresponding to a general gait pattern. Turning is simulated poorly if at all, and violations of kinematic constraints between the feet and ground are common. Moreover, current models do not accurately predict foot placement with respect to loads and other hand targets, diminishing the utility of the associated ergonomic analyses. A new approach to simulating stepping and walking in task-oriented activities is proposed. Foot placements and motions are predicted from operator and task characteristics using empirical models derived from laboratory data and validated using field data from an auto assembly plant.
Technical Paper

Predicting Force-Exertion Postures from Task Variables

2007-06-12
2007-01-2480
Accurate representation of working postures is critical for ergonomic assessments with digital human models because posture has a dominant effect on analysis outcomes. Most current digital human modeling tools require manual manipulation of the digital human to simulate force-exertion postures or rely on optimization procedures that have not been validated. Automated posture prediction based on human data would improve the accuracy and repeatability of analyses. The effects of hand force location, magnitude, and direction on whole-body posture for standing tasks were quantified in a motion-capture study of 20 men and women with widely varying body size. A statistical analysis demonstrated that postural variables critical for the assessment of body loads can be predicted from the characteristics of the worker and task.
Technical Paper

The Virtual Driver: Integrating Task Planning and Cognitive Simulation with Human Movement Models

2007-04-16
2007-01-1766
Digital human modeling has traditionally focused on the physical aspects of humans and the environments in which they operate. As the field moves towards modeling dynamic and more complex tasks, cognitive and perceptual aspects of the human's performance need to be considered. Cognitive modeling of complex tasks such as driving has commonly avoided the complexity of physical simulation of the human, distilling motor performance to motion execution times. To create a more powerful and flexible approach to the modeling of human/machine interaction, we have integrated a physical architecture of human motion (the Human Motion Simulation Ergonomics Framework—HUMOSIM) with a computational cognitive architecture (the Queueing network model human processor—QN–MHP). The new system combines the features of the two separate architectures and provides new capabilities that emerge from their integration.
Technical Paper

Modeling Vehicle Ingress and Egress Using the Human Motion Simulation Framework

2008-06-17
2008-01-1896
The ease of getting into and out of passenger cars and light trucks is a critical component of customer acceptance and product differentiation. In commercial vehicles, the health and safety of drivers is affected by the design of the steps and handholds they use to get into and out of the cab. Ingress/egress assessment appears to represent a substantial application opportunity for digital human models. The complexity of the design space and the range of possible biomechanical and subjective measures of interest mean that developing useful empirical models is difficult, requiring large-scale subject testing with physical mockups. Yet, ingress and egress motions are complex and strongly affected by the geometric constraints and driver attributes, posing substantial challenges in creating meaningful simulations using figure models.
Technical Paper

Validation of the Human Motion Simulation Framework: Posture Prediction for Standing Object Transfer Tasks

2009-06-09
2009-01-2284
The Human Motion Simulation Framework is a hierarchical set of algorithms for physical task simulation and analysis. The Framework is capable of simulating a wide range of tasks, including standing and seated reaches, walking and carrying objects, and vehicle ingress and egress. In this paper, model predictions for the terminal postures of standing object transfer tasks are compared to data from 20 subjects with a wide range of body dimensions. Whole body postures were recorded using optical motion capture for one-handed and two-handed object transfers to target destinations at three angles from straight ahead and three heights. The hand and foot locations from the data were input to the HUMOSIM Framework Reference Implementation (HFRI) in the Jack human modeling software. The whole-body postures predicted by the HFRI were compared to the measured postures using a set of measures selected for their importance to ergonomic analysis.
Technical Paper

Improved ATD Positioning Procedures

2001-03-05
2001-01-0117
Current anthropomorphic test device (ATD) positioning procedures for drivers and front-seat passengers place the crash dummy within the vehicle by reference to the seat track. Midsize-male ATDs are placed at the center of the fore-aft seat track adjustment range, while small-female and large-male ATDs are placed at the front and rear of the seat track, respectively. Research on occupant positioning at UMTRI led to the development of a new ATD positioning procedure that places the ATDs at positions more representative of the driving positions of people who match the ATD's body dimensions. This paper presents a revised version of the UMTRI ATD positioning procedure. The changes to the procedure improve the ease and repeatability of ATD positioning while preserving the accuracy of the resulting ATD positions with respect to the driving positions of people matching the ATD anthropometry.
Technical Paper

Redesigning Workstations Utilizing Motion Modification Algorithm

2003-06-17
2003-01-2195
Workstation design is one of the most essential components of proactive ergonomics, and digital human models have gained increasing popularity in the analysis and design of current and future workstations (Chaffin 2001). Using digital human technology, it is possible to simulate interactions between humans and current or planned workstations, and conduct quantitative ergonomic analyses based on realistic human postures and motions. Motion capture has served as the primary means by which to acquire and visualize human motions in a digital environment. However, motion capture only provides motions for a specific person performing specific tasks. Albeit useful, at best this allows for the analysis of current or mocked-up workstations only. The ability to subsequently modify these motions is required to efficiently evaluate alternative design possibilities and thus improve design layouts.
Technical Paper

Modeling Population Distributions of Subjective Ratings

2001-06-26
2001-01-2122
Most human figure models used in ergonomic analyses present postural comfort ratings based on joint angles, and present a single comfort score for the whole body or on a joint-by-joint basis. The source data for these ratings is generally derived from laboratory studies that link posture to ratings. Lacking in many of these models is a thorough treatment of the distribution of ratings for the population of users. Information about ratings distributions is necessary to make cost-effective tradeoffs when design changes affect subjective responses. This paper presents experimental and analytic methods used to develop distribution models for incorporating subjective rating data in ergonomic assessments.
Technical Paper

Methods for In-Vehicle Measurement of Truck Driver Postures

2001-11-12
2001-01-2821
Effective application of human figure models to truck interior design requires accurate data on the postures and positions of truck drivers. Errors in positioning of figure models propagate to errors in reach, visibility, and other analyses. This paper describes methods used in a recent study to measure in-vehicle driving postures in Class 6, 7, and 8 trucks. A three-dimensional coordinate measurement machine was used to measure body landmark locations after a driver completed a short road course. The data were used to validate posture-prediction models developed in a previous laboratory study. Vehicle calibration, driver selection, and testing methods are reviewed.
Technical Paper

Characterization of Driver Seatbelt Donning Behavior

2002-03-04
2002-01-0783
Improvements in the accessibility and ease of use of seatbelts require an understanding of driver belt donning behavior. Participants in a study of driving posture were videotaped as they put on their belts in their own vehicles, either an SUV or a midsize sedan. The participants were unaware that the purpose of the videotaping was related to the seatbelt. Videos from 95 men and women were analyzed to identify several categories of belt-donning behavior and to analyze the influence of body dimensions. The results have applicability to seatbelt system design, including the use of human figure models to assess seatbelt accessibility.
Technical Paper

Understanding Work Task Assessment Sensitivity to the Prediction of Standing Location

2011-04-12
2011-01-0527
Digital human models (DHM) are now widely used to assess worker tasks as part of manufacturing simulation. With current DHM software, the simulation engineer or ergonomist usually makes a manual estimate of the likely worker standing location with respect to the work task. In a small number of cases, the worker standing location is determined through physical testing with one or a few workers. Motion capture technology is sometimes used to aid in quantitative analysis of the resulting posture. Previous research has demonstrated the sensitivity of work task assessment using DHM to the accuracy of the posture prediction. This paper expands on that work by demonstrating the need for a method and model to accurately predict worker standing location. The effect of standing location on work task posture and the resulting assessment is documented through three case studies using the Siemens Jack DHM software.
Technical Paper

Considering Driver Balance Capability in Truck Shifter Design

2006-07-04
2006-01-2360
A person's ability to perform a task is often limited by their ability to maintain balance. This is particularly true in lateral work performed in seated environments. For a truck driver operating the shift lever of a manual transmission, excessive shift forces can necessitate pulling on the steering wheel with the other hand to maintain balance, creating a potentially unsafe condition. An analysis of posture and balance in truck shifter operation was conducted using balance limits to define the acceptable range of shifter locations. The results are dependent on initial driver position, reach postures, and shoulder strength. The effects of shifter force direction and magnitude were explored to demonstrate the application of the analysis method. This methodology can readily be applied to other problems involving hand-force exertions in seated environments.
Technical Paper

The HUMOSIM Ergonomics Framework: A New Approach to Digital Human Simulation for Ergonomic Analysis

2006-07-04
2006-01-2365
The potential of digital human modeling to improve the design of products and workspaces has been limited by the time-consuming manual manipulation of figures that is required to perform simulations. Moreover, the inaccuracies in posture and motion that result from manual procedures compromise the fidelity of the resulting analyses. This paper presents a new approach to the control of human figure models and the analysis of simulated tasks. The new methods are embodied in an algorithmic framework developed in the Human Motion Simulation (HUMOSIM) laboratory at the University of Michigan. The framework consists of an interconnected, hierarchical set of posture and motion modules that control aspects of human behavior, such as gaze or upper-extremity motion. Analysis modules, addressing issues such as shoulder stress and balance, are integrated into the framework.
Technical Paper

Behavior-Based Model of Clavicle Motion for Simulating Seated Reaches

2006-04-03
2006-01-0699
A major limitation of ergonomic analyses with current digital human models (DHM) is the speed and accuracy with which they can simulate worker postures and motions. Ergonomic analysis capabilities of DHM would be significantly improved with the addition of a fast, deterministic, accurate movement simulation model for the upper extremities. This paper describes the development of an important component of such a model. Motion data from twelve men and women performing one-handed, push-button reaches in a heavy truck seat were analyzed to determine patterns of motion of the clavicle relative to the thorax. Target direction and reach distance were good predictors clavicle segment motion, particularly for fore-aft clavlcle motion.
Technical Paper

Optimizing Vehicle Occupant Packaging

2006-04-03
2006-01-0961
Occupant packaging practice relies on statistical models codified in SAE practices, such as the SAE J941 eyellipse, and virtual human figure models representing individual occupants. The current packaging approach provides good solutions when the problem is relatively unconstrained, but achieving good results when many constraints are active, such as restricted headroom and sightlines, requires a more rigorous approach. Modeling driver needs using continuous models that retain the residual variance associated with performance and preference allows use of optimization methodologies developed for robust design. Together, these models and methods facilitate the consideration of multiple factors simultaneously and tradeoff studies can be performed. A case study involving the layout of the interior of a passenger car is presented, focusing on simultaneous placement of the seat and steering wheel adjustment ranges.
X